From eda5b0f55fe5d64fb7572cac07d6bb1bcac04270 Mon Sep 17 00:00:00 2001 From: Jakub Kultys <274494@student.pwr.edu.pl> Date: Wed, 1 Feb 2023 16:44:46 +0100 Subject: [PATCH] Przeslanie pliku lab6 wykresy Python --- Technologie Informacyjne/LAB-6.ipynb | 552 +++++++++++++++++++++++++++ 1 file changed, 552 insertions(+) create mode 100644 Technologie Informacyjne/LAB-6.ipynb diff --git a/Technologie Informacyjne/LAB-6.ipynb b/Technologie Informacyjne/LAB-6.ipynb new file mode 100644 index 0000000..250ef3a --- /dev/null +++ b/Technologie Informacyjne/LAB-6.ipynb @@ -0,0 +1,552 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#%matplotlib widget\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## Wykresy funkcji\n", + "\n", + "Narysuj wykresy funkcji:\n", + "\n", + "- $f(x) = 16 - 12 x - 8 x^2 + 3 x^3 + x^4 $ dla $x\\in[-4.2, 3.1]$ \n", + "- $f(x) = sin(x) $ dla $x\\in(-2\\pi, 2\\pi)$ \n", + "- $f(x) = sin(x) cos(2x) $ dla $x\\in(0, 5\\pi)$ \n", + "\n", + "---\n", + "\n", + "- Opisz osie wykresów\n", + "- Dodaj do każdego wykresu siatkę i \"legendę\"\n", + "- Ustaw sensowny rozmiar wykresu\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEGCAYAAACO8lkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAArSElEQVR4nO3deXhU5d3G8e8vKyEJBAiEkLDJvskqKKCCgLuiVi19qbVKpS5Ua+trtXZ5e1lrW6vVaq3aYlVcqKJFpaggi4iyhn0JhJ2wJGFPAiHLPO8fGdqUBAmYyTmT3J/rypVMZjhzM2Ryc85zzvOYcw4REZGKIrwOICIi/qNyEBGRSlQOIiJSicpBREQqUTmIiEglUV4HqAnJycmuXbt2Idt+YWEh8fHxIdt+TQmHnOGQEZSzJoVDRqifOTMyMvY555pXeadzLuw/+vfv70Jpzpw5Id1+TQmHnOGQ0TnlrEnhkNG5+pkTWOpO8XtVh5VERKQSlYOIiFSichARkUpUDiIiUonKQUREKlE5iIhIJSoHERGpROUgIhKmXp6/lemr94Rk2yoHEZEw9eK8zcxanxuSbascRETC0JGiEnKOHKdji4SQbF/lICIShjbnFgDQoXlo5oNSOYiIhKFNwXKok3sOZna/ma01szVm9paZNTCzpmY208yygp+beJlRRMSPNucVEhMZQZumDUOyfc/KwczSgHuBAc65nkAkMAZ4CJjlnOsEzAreFhGRCjblFtAuuSFRkaH5Ne71YaUoIM7MooCGwG5gNPBq8P5Xgeu8iSYi4l+b8wpCdkgJwMqn9PaGmd0HPAYcA2Y458aa2SHnXFKFxxx0zlU6tGRm44HxACkpKf0nT54cspwFBQUkJITuH6GmhEPOcMgIylmTwiEjhFfO2IbxjJ9xlKs7RPONTjFnva3hw4dnOOcGVHnnqRZ6CPUH0ASYDTQHooGpwLeBQyc97uDptqXFfsqFQ85wyOicctakcMjoXHjlzNxzxLX9yTQ3dXn219oWPl3sZySw1TmX55wrAd4DBgM5ZpYKEPwcmis8RETC1Oa8E6exhm5Px8ty2AGcb2YNzcyAEcB64APg1uBjbgXe9yifiIgvbcoNfTlEhWzLp+GcW2RmU4BlQCmwHHgJSADeNrNxlBfITV5lFBHxo025BaQlxREXExmy5/CsHACcc78EfnnSt49TvhchIiJV2JQb2jOVwPtTWUVE5AwEnGPLPpWDiIhUsP+Yo6gkoHIQEZH/2FMYAEI3p9IJKgcRkTCyu6D8wuVQnqkEKgcRkbCyuzBA0/gYmsaf/ZXR1aFyEBEJI3sKAnQM8V4DqBxERMKGc47dhQE6hHi8AVQOIiJhIy//OIUl0CVF5SAiIkEbcvIB6NwyMeTPpXIQEQkTG/aWl0OXFJWDiIgEbdibT6MYo1lCbMifS+UgIhImNubkk55otfJcKgcRkTAQCDg25hSQllA7v7ZVDiIiYWDnwaMcKykjPVHlICIiQScGo9O15yAiIidsDJ7G2krlICIiJ2TuzSe9SRxxURqQFhGRoI05+XSthYvfTlA5iIj4XHFpgC15hXSuhYvfTlA5iIj43JZ9BZQGHF205yAiIif8e9oMlYOIiJywMSefqAjjnOTQz8Z6gspBRMTnNuzNp31yPDFRtfcrW+UgIuJzG3Lya/WQEqgcRER8Lb+ohJ0HjtXKNN0VqRxERHwsMzgY3SOtUa0+r8pBRMTH1u0+AkD31Ma1+rwqBxERH1u3+whN42NIaRT6BX4qUjmIiPjYuj1H6NGqEWa1M6fSCZ6Wg5klmdkUM8s0s/VmdoGZNTWzmWaWFfzcxMuMIiJeKSkLsGFvPt1Ta3e8Abzfc3gG+Ng51xXoDawHHgJmOec6AbOCt0VE6p3NeQUUlwXo3qoelYOZNQIuAiYCOOeKnXOHgNHAq8GHvQpc50U+ERGv/WcwuvbLwZxztf6kAGbWB3gJWEf5XkMGcB+wyzmXVOFxB51zlQ4tmdl4YDxASkpK/8mTJ4csa0FBAQkJtXfZ+tkKh5zhkBGUsyaFQ0bwZ863Mo8zZ0cpL4xqSERwzKEmcw4fPjzDOTegyjudc558AAOAUmBQ8PYzwKPAoZMed/B02+rfv78LpTlz5oR0+zUlHHKGQ0bnlLMmhUNG5/yZc8yLC9y1z83/r+/VZE5gqTvF71UvxxyygWzn3KLg7SlAPyDHzFIBgp9zPconIuIZ5xzr9hzx5JASeDjm4JzbC+w0sy7Bb42g/BDTB8Ctwe/dCrzvQTwREU/tPlzE4WMlngxGA0R58qz/8QPgDTOLAbYAt1FeWG+b2ThgB3CTh/lERDxxYjC6R30sB+fcCsrHHk42opajiIj4yrrdRzCjVteNrsjr6xxERKQKa3cfpn1yPA1jvPk/vMpBRMSHyqfNqN3J9ipSOYiI+MzhoyVkHzxGt1RvDimBykFExHdW7zoMwLlpSZ5lUDmIiPjMyuxDAPRK12ElEREJWpV9iPbJ8TSOi/Ysg8pBRMRnVmUfplead3sNoHIQEfGV3Pwi9hwu4lwPDymBykFExFdWZ5cPRvduneRpDpWDiIiPrMw+TIR5N23GCSoHEREfWZV9iE4tEj27MvoElYOIiE8451iVfdjz8QZQOYiI+Eb2wWMcKCzmXI/HG0DlICLiG/+5Mlp7DiIiErQy+xDRkUZXD+dUOkHlICLiE6t2HqZbaiNioyK9jqJyEBHxg0DAsWaX91dGn6ByEBHxgS37Csk/Xkrv9CSvowAqBxERX1i2/SAA/domeRskSOUgIuIDGdsP0jgumnOSE7yOAqgcRER8YdmOg/Rrk0REhHkdBVA5iIh47vDRErJyC+jftonXUf5N5SAi4rFlO0+MN6gcREQkaNn2g0RGmG/OVAKVg4iI5zK2H6RbaiLxsd7OxFqRykFExEOlZQFW7DxE/zb+OaQEKgcREU9l7s3naHGZr8YbQOUgIuKpZTuCg9HacxARkRMyth+kRWIs6U3ivI7yXzwvBzOLNLPlZjYteLupmc00s6zgZ3/VqYhIDVq24yD92zbBzB8Xv53geTkA9wHrK9x+CJjlnOsEzAreFhGpc3KPFLHzwDFfXfx2gqflYGbpwFXA3yp8ezTwavDrV4HrajmWiEitWLKtfLzBj+VgzjnvntxsCvA4kAg84Jy72swOOeeSKjzmoHOu0itnZuOB8QApKSn9J0+eHLKcBQUFJCT4YzKsrxIOOcMhIyhnTQqHjOBNztfWHefLXaU8N6IhUdWcU6kmcw4fPjzDOTegyjudc558AFcDzwe/HgZMC3596KTHHTzdtvr37+9Cac6cOSHdfk0Jh5zhkNE55axJ4ZDROW9yjnxyrvvOxEVn9GdqMiew1J3i96qXl+MNAa41syuBBkAjM3sdyDGzVOfcHjNLBXI9zCgiEhL7Co6TlVvADf3SvY5SJc/GHJxzDzvn0p1z7YAxwGzn3LeBD4Bbgw+7FXjfo4giIiGzaMsBAAad09TjJFXzw9lKJ/stMMrMsoBRwdsiInXKwi37aRgT6Zs1o0/mi1menHNzgbnBr/cDI7zMIyISaou27mdAu6ZER/rx/+j+3HMQEanT9hUcZ2NOAef79JASqBxERGrd4q3B8Yb2zTxOcmoqBxGRWrZwy37ioiM5N92f4w2gchARqXULt+xnQLsmvh1vAJWDiEit2v/v8Qb/HlKCap6tZGYtKL9orRVwDFhD+ZV1gRBmExGpcxYGr2/w82A0nKYczGw45bOiNgWWU361cgPKJ8PrEJwb6Unn3JEQ5xQRqRPmbcwjsUEUvdOTvI7ylU6353AlcIdzbsfJd5hZFOXzI40C3g1BNhGROsU5x+dZeQzpkEyUj8cb4DTl4Jz736+4rxSYWtOBRETqqs15Bew+XMSES5p7HeW0qlVdZjbJzBpXuN3OzGaFLpaISN3z2cZ9AFzYKdnjJKdX3f2a+cAiM7vSzO4AZgBPhyyViEgd9HlWHuckx9O6aUOvo5xWtc5Wcs69aGZrgTnAPqCvc25vSJOJiNQhRSVlLNyynzHntfE6SrVU97DSLcDLwHeAV4DpZtY7hLlEROqUjO0HKSoJhMUhJaj+rKzfAIY653KBt8zsn5SXRN9QBRMRqUvmbcwjOtJ8f/HbCdU9rHTdSbcXm9mgkCQSEamDPtuYx4C2TYmP9cVKCaf1lYeVzOxnZlblZXzOuWIzu8TMrg5NNBGRuiH3SBGZe/O5qLP/T2E94XQVthr40MyKgGVAHuVXSHcC+gCfAr8JZUARkXA3Lyt8TmE94XTlcKNzboiZPUj51BmpwBHgdWC8c+5YqAOKiIS7mev20rJRA3q0auR1lGo7XTn0N7O2wFhg+En3xVE+CZ+IiJxCUUkZ8zbu4xv90zAzr+NU2+nK4QXgY+AcYGmF7xvggt8XEZFT+HLzPo6VlDGqe0uvo5yRrxyQds79yTnXDXjZOXdOhY/2zjkVg4jIacxcl0NCbJTvp+g+WbUugnPO3RXqICIidU0g4Ph0fS4Xd2lObFSk13HOiL/njBURCWMrsg+Rl3+cUd1SvI5yxlQOIiIh8um6HCIjjOFdWngd5YypHEREQmTmuhwGtW9K44bRXkc5YyoHEZEQ2LavkKzcAkZ1D79DSqByEBEJiU/Wlq9qMDIMxxtA5SAiEhLTVu2hd3rjsFjYpyqelYOZtTazOWa23szWmtl9we83NbOZZpYV/NzEq4wiImdj675CVu86zDW9W3kd5ax5uedQCvw4eJHd+cA9ZtYdeAiY5ZzrBMwK3hYRCRvTVu4G4KpzUz1OcvY8Kwfn3B7n3LLg1/nAeiANGA28GnzYq8B1ngQUETkLzjk+WLmbge2akto4zus4Z80Xq06YWTvKV5VbBKQ45/ZAeYGYWfidICx1XlFJGVk5BWzIyWfHgaPkHikiN/84h4+VUFIWoLg0gJkRHxNJfGwUSQ2jSUuKI71JQ9o2a0j31EY0iY/x+q8hIbAhJ5+s3AIeHd3D6yhfiznnvA1glgB8BjzmnHvPzA4555Iq3H/QOVdp3MHMxgPjAVJSUvpPnjw5ZBkLCgpISEgI2fZrSjjkDIeMUDlnQbFj/YEyMg+UseFAGbsKHCfeOQYkxhhJsUZCDESZERncJy8qdRSVQkGJ40CRo6zC2y05zmjXKIJuzSLp0SySlIZ2xrN2hsPrGQ4ZoeZyTtlYzPStJTw9rCGNYmt+FtaafD2HDx+e4ZwbUNV9npaDmUUD04BPnHNPBb+3ARgW3GtIBeY657p81XYGDBjgli5d+lUP+Vrmzp3LsGHDQrb9mhIOOcMhI5Tn7NH/Aj5Zu5eP1uxh4ZYDlAUccdGRDGjXhL5tmtC1ZSJdWibStmlDoiJPf4S2LODIOVLElrxC1uw+zJpdh1m+4xC7DpXPfJ+WFMflPVtyZa9U+rZOIiLi9L9YwuH1DIeMUDM5nXNc/MRc2jZryKRxoVlJuSZfTzM7ZTl4dljJyv+LNBFYf6IYgj4AbgV+G/z8vgfxpJ4KBByfb9rHs8uLWDljFqUBxznJ8Xz/onO4pGsLzk1PIibq7IbqIiOMVklxtEqKY2hwRTDnHNv3H+XzTfuYm5nLpAXbmTh/K60aN+DG/ul8c2Ab0pLC97h1fbMy+zA7DhxlwiUdvY7ytXk55jAEuAVYbWYrgt/7KeWl8LaZjQN2ADd5E0/qk6KSMqZkZPPXz7ewff9REqNh3NBzuKFfOp1TEkK2SIuZ0S45nnbJ8dxyfluOFJXw6boc3l+xm2fnbOLZOZsY1rk5tw9tz9COyWG1WEx9NHX5LmIiI7gszNZuqIpn5eCcm0/54dqqjKjNLFJ/HSsu47UF2/jb/K3k5R+nd+skfnxpF+L2b2DUJd1qPU+jBtHc0C+dG/qls/PAUd5eupPJS3Zyy8TFdE9txPcvPoereqVW6zCW1K6ikjKmrtjFqB4pYTmX0sl8cbaSSG0rCzimZOzkjzOz2HukiAs7JfPMmD5ccE4zzIy5czd6HZHWTRvy40u7MOGSjry/fDcvztvMfZNX8MynWfxwVGeu7hW+59DXRTPW5XDoaAljzmvtdZQaoXKQemfB5v388oM1bMwpoE/rJP70rb4MbO/fVbpioyK5+bzW3Ng/nRnrcvjjzI3c+9Zynp+ziSvTShnmdUAB4O0lO0lLimNIh2Svo9QIlYPUG/sKjvObf63nveW7SG8Sx1/G9uPyni3D5jh+RIRxec+WjOqewrRVu3lq5kaeyjjOsoLF/OyqbnRskeh1xHpr54GjzN+0j/tHdq7WWWbhQOUgdZ5zjveW7eJXH67lWEkZE4Z35J7hHYmLCa9lG0+IjDBG90njip6p/HzSLKZvO8hlT3/Odwe34/5RnUmI1du6tr29dCdmcNOAdK+j1Jh6PapVWhZg8dYDFB4v9TqKhEhe/nHGT8rgx++spEvLRD667yIeuKxL2BZDRTFREVzRPpq5/zuMmwe0ZuL8rYx66rN/TxUttaMs4HhnaTYXdWpOqzp02nG9Loel2w9y84sLmL9pn9dRJAQ+XZfDZU/P47ONefzsqm5MHn8BHVv4/0rdM9UsIZbHb+jFu3cNpnFcNN+flMH415aSm1/kdbR6Yd7GPPYeKaozA9En1Oty6NemCQmxUczdkOd1FKlBxaUBHp22ju+9tpTUxg2Yfu9QvnfhOUTWkWPBp9K/bRM+/MFQHr6iK59tzGPUU/OYunwXXk+RU9e9vnA7zeJjGBGmi/qcSr0uh5ioCAZ3aMa8jXl6A9UROw8c5cYXvmTi/K18d3A73rt7cL0aqI2OjOD7F3dg+n0X0qF5PD/8xwrGT8pgf8Fxr6PVSVvyCpiVmcvY89ue9ZXzflW3/jZn4eIuzdl16Bib8wq8jiJf0/ysfVzz3Hy27ivkhW/35/+u7UFsVPiPLZyNDs0TeOfOwTxyZTc+25DHZU9/zpzMXK9j1Tl//2IbMZER3HJ+W6+j1DiVQ+fmADq0FMacc/x13ha+8/IiWiTG8uGEoVzeM/ynL/i6IiOMOy46hw9+MITkhBhue2UJP5+6hqKSMq+j1QmHjhYzJSOb0X1a0Twx1us4Na7el0N6k4Z0bJHAZxtVDuGouDTAA++s4rHp67msR0veu3sI7ZLjvY7lK11bNmLqPUP43tD2TFq4nev+/AWbcvO9jhX23ly8g2MlZYy7sL3XUUKi3pcDwLDOzVm05QBHi3VKazg5dLSYWyYu4t1l2dw/sjPPj+2nc/xPoUF0JD+7ujt/v+08cvOPc82zX/D2kp0aaztLxaUBXv1yG0M7JtO1ZSOv44SEyoHycYfisgCLthzwOopU0/b9hdzw/Jcs33GIZ8b04b6RncLmSmcvDe/Sgo/uu5C+bZJ48N1VPPDOKv2n6CxMX72HnCPHGTe0bu41gMoBgPPaNSUuOpK5GzRgFw7W7DrMN/7yJQePFvPGHYMY3SfN60hhJaVRAyaNG8R9Izrx3vJsHWY6Q4GA44XPNtOhefy/xyzrIpUD5bvcF3RopnGHMDA/ax/ffHEBsVGRTLlrMOe18++EeX4WGWHcP6ozr942kH0FxVz73BdMW7Xb61hhYfqaPWTuzefeEZ3qzDxKVVE5BF3cuTnb9h9l275Cr6PIKfxr1R5ue2UxrZs25L27B9Ohed272rm2XdS5OdPvvZCuLROZ8OZyHp22jpKygNexfKss4Hj60yw6tUjg6nNbeR0npFQOQcO6lO8ezta54L709tKd/OCtZfRpncQ/vn8BKY0aeB2pzmjZuAGTx1/Adwe3Y+L8rYz96yJNvXEKH67czabcAn44snOdv+Je5RDUtlk8nVMSNGmZD722YBsPTlnFkI7JvHb7IBrHhf8qW34TExXB/13bg2fG9GHVrkNc8+x8MrYf9DqWr5SWBXhmVhZdWyZyRT24jkblUMFlPVqyZNsBTTXgIy9+tplfvL+WUd1T+NutA+rEbKp+NrpPGv+8ewixUZGMeWkBkxZu1+muQVNX7GbrvkLuH1V31mz4KiqHCi7r0ZKAg1nrdWjJD56fu4nHP8rkmt6teH5sv3o7FUZt65baiA8nDGVox2R+PnUND05ZVe+vqj5WXMZTMzbQM60Rl3avWxPsnYrKoYIerRqRlhSnQ0s+8Oc5m/j9xxu4rk8r/nhzb6Ij9aNamxo3jGbiredx74hOvJORzc0vLmD3oWNex/LM83M3sftwEb+4uke9uZ5G77gKzIzLerTk8037KNACQJ55bnYWT3yygev7pvHkzX2IUjF4IiLC+NGozrx0S3+25BVyzbPz+XJz/Vv7ZNu+Ql78bAvX9Wnl67XGa5redSe5rEcKxaUBPtNEfJ544bPN/GHGRm7om8Yfbupd588ICQeX9mjJ+xOG0CQ+hlsmLuav87bUq3GIR6etIzrSePjKbl5HqVUqh5MMaNeUZvExOrTkgYnzt/Lb4BjDEyoGX+nQPIGp9wzh0u4pPDZ9PRPeWl4vltednZnDrMxc7hvZqd6dPq1yOElkhDGyWwpzMnM5Xlq/B+Fq06SF23l02jqu6NmSp25WMfhRQmwUz4/tx0NXdOWj1XuC027U3XVQ8otK+MX7a+nQPJ7vDq67cyidisqhCpf1TCH/eClfbt7vdZR6YUpGNj+fuoaR3VrwzJi+Gnz2MTPjzos7MGncIA4UFjP6uflMX73H61gh8asP17H70DF+f+O5dW6Vt+qof3/jahjSMZnEBlFMW1k3f+j95KPVe3hwykqGdGzGc//Tr16+CcPRkI7JTLt3KJ1bJnL3G8v41YdrKS6tO9NufLR6D1Mysrl7WEf6t60/g9AV6Z1YhdioSK7o2ZKP1+zhWLEOLYXK3A253Dt5OX3bNOGv3xlAg2hdxxBOUhvH8Y/gtBt//2IbN724gJ0Hjnod62vLOVLEw/9cTa+0xtw3spPXcTyjcjiF6/qmUVhcxqfrc7yOUict2XaAO1/PoHNKIi9/9zwaxmiRnnB0YtqNv4ztx5bcAq760+d8vCZ8T+YoLQvwwDsrKSop44/f7FOvD3H69m9uZpeb2QYz22RmD9X285/fvhmpjRswdfmu2n7qOm/d7iPc/soSWiXF8drtAzVXUh1wRa9Upt07lLbN4rnz9Qwe+efqsNzrfmz6ej7P2sf/XdODji3q96y/viwHM4sE/gxcAXQHvmVm3WszQ0SEcW3vVny2MY/84vpzTneo7S0M8J2XF5MYG8WkcYNollD3Fmavr9o2i+fduwbz/YvO4Y1FO7j2ufms233E61jVNntHCX//YhvjhrZnzMA2XsfxnC/LARgIbHLObXHOFQOTgdG1HeK6vmmUBhyL99b987lrQ86RIv6wtIiAc0z63iDSkuK8jiQ1LCYqgoev7Mbr4wZx6FgJo/88nw82F1Pq8zUiPs/K4/X1xVzStQU/rWcXu52K+fFKRzO7EbjcOfe94O1bgEHOuQkVHjMeGA+QkpLSf/LkySHJ8rP5R4m2AL8c4v9dzIKCAhIS/JmzsMTx+KJj5B0L8PDAONo19vfgs59fy4r8nLOg2DFp3XEW7S3jnMYRfK9XLK0S/Pf/0ayDZTy5tIimsY6fD44nLsrf19jU5L/58OHDM5xzA6q6z6+jgFX96/xXiznnXgJeAhgwYIAbNmxYSIKMZTO/+ziT9r3Oo22z+JA8R02ZO3cuoXodvo5jxWV8e+Iico8V8cN+cXx39AivI52WX1/Lk/k959WXwu/f+pS3sgL8ckERdw3ryN3DOvjmzLQvNu3jqVlLadUkngk9A1wxcrjXkU6rtv7N/Vfj5bKB1hVupwOeLHA7uk8rDHhvmQamz0ZJWYB73lzGsh0HeWZMH7o388cvBak9A1OjmPmji7mqVyp/mpXFlc98zhebvJ/Ab3ZmDre9soS2zRryj+9fQNMGfv116A2/vhpLgE5m1t7MYoAxwAdeBGmVFEePZpG8vXSn74+b+k0g4PjJu6uYnZnLr6/ryRW9Ur2OJB5JTojl6TF9ee32gZQGHGP/tojvvbqULXm1P/1GIOD4y9zN3PFaBl1SEnnrjvNpnqgTI07my3JwzpUCE4BPgPXA2865tV7lGd4mij2Hi7S+9Bn67ceZvLdsFz8a1Zmxg9p6HUd84KLOzZlx/0X85PKuLNyyn0v/OI9fvL+GPYdrZ62IA4XF3P7qEn73cSaX9UjhzTsG0SQ+plaeO9z4dcwB59x0YLrXOQD6NI8kpVEsbyzawaU96v7asTXhpXmbeWneFr5zQVt+cElHr+OIjzSIjuSuYR24sX86f/x0I28u2sHkxTu5aUA6d17cgdZNG9b4cwYCjg9W7ubxj9ZzsLCER0f34Nvnt603C/ecDd+Wg59ERhhjzmvDn2ZnsWP/Udo0q/kf3rrk3YxsfjM9k6vOTeWX19SflbPkzDRPjOU31/firos78JfPNvP20p28uXgHw7u0YOygNgzr0uJrz87rnGPBlv08Pj2T1bsO06NVIybeeh490xrX0N+i7lI5VNOYga15dnYWby7ewUNXdPU6jm/NzszhwXdXMaRjM029LdXSumlDfnN9L35wSUfeXLSDfyzZybhXl9I8MZaR3VK4tHsKF3RodkZnOOXmFzF1+S6mZGSzMaeAVo0b8Mdv9mZ07zQi9DNZLSqHakptHMeIbim8s3Qn94/qpMXuq5Cx/QB3v7GM7qmNePGWAXqN5IykNo7jx5d24d4Rnfh0XQ4frtrNByt28dbiHcRERtA1NZFeaY3p2jKRpvGxNImPJj4mioLjpeQXlZCXf5xV2YdZmX2IrNwCnIN+bZJ47PqefKNfum9Onw0XKocz8O3z2zJzXQ4fr9nL6D5pXsfxlY05+dz+ylJSG8fxym3nkRCrHy05O9GREVzRK5UreqVSVFLGgs37WbBlP6uzD/PByt28sejUMxY0i4+hT+skrjm3FVeem0qH5v68QDAc6B18Bi7smEzbZg15+YttXNu7lY6lB+08cJRbJi4iNiqC124fqPmSpMY0iI5keNcWDO/aAigfWN5XcJwDR4s5WFhC4fFSEhtEkdggmqbxMaQ0itX7soaoHM5ARIQx/qJzeOSfa1iweT+DOyZ7Hclz+wqO852XF3OsuIx37hwckjNNRE6IiDBaNGpAi3q2nrMXfHmdg599o186yQmx/OWzzV5H8Vx+UQnf/fti9hw+xt9vO48uLRO9jiQiNUTlcIYaREcybmh7Ps/ax+rsw17H8UxRSRnjXl1K5p58/jK2f71dSlGkrlI5nIWx57chMTaKF+rp3kNJWYC731jGkm0HePLm3v8+HiwidYfK4Sw0ahDNLRe0ZfqaPZ7MDeOlQMDxwDsrmZ2Zy6Oje+qsLZE6SuVwlm4b0p7oyAien1t/9h6cc/zs/TW8v2I3/3tZF759vuZLEqmrVA5nqXliLLec35b3lmWzYW++13FCzjnHo9PW8+aiHdw1rAN3D+vgdSQRCSGVw9cwYXhH4mOj+N3HmV5HCbknZ2zk5S+2ctuQdjx4WRedSy5Sx6kcvoYm8THcM7wjszNz+XKz94uXhMqzs7J4bs4mvjWwNb+4uruKQaQeUDl8Td8d3I5WjRvw+PRMAgH/rcf9dT03O4snZ27khn5p/Pq6XioGkXpC5fA1NYiO5IHLurB612E+XOXJSqYh8+c5m/jDjI3c0DeNJ27UDKsi9YnKoQZc1yeN7qmNeHx6JkeKSryOUyOem53FE59s4Lo+rXjiJhWDSH2jcqgBERHGb27oRW5+Eb/9KLwHp51z/P7jTP4wYyPX903jyZv7qBhE6iGVQw3p0zqJcUPb8+aiHSzYvN/rOGfFOcevPlzH83M3862BbXhSewwi9ZbKoQb9aFQX2jZryEPvreJYcZnXcc5IaVmAB6es4pUvt3H7kPb85vqeWjFLpB5TOdSguJhIHr+hF9v3H+UPMzZ4HafajhaXMn5SBu9kZHPviE78/OpuOitJpJ5TOdSwwR2SueX8tkycv5WP1+z1Os5pHSws5n/+uoi5G3L59XU9+dGozioGEVE5hMLPru5G7/TGPPDOSjbl+ndivk25BVz//Bes23OE58f211xJIvJvKocQiI2K5C/f7k9sVAR3vp5BwfFTr3nrlbkbcrn++S8oOF7KW3cM4vKeLb2OJCI+onIIkVZJcTz7P33ZklfAj/6xgtKygNeRgPIzkv72+RZuf2UJaUlxTL1niBbqEZFKVA4hNLhDMj+/ujsz1uXwwDsrKfN4eo3DR0sYPymDX/9rPaO6p/DuXYNJb6I1n0WksiivA9R1tw1pz9HiMp74ZAMREebZNBQrdh5iwpvL2Hu4iJ9d1Y1xQ9tr4FlETknlUAvuGd6RsoDjqZkbMYzHb+hFTFTt7LQVlZTx9KdZvDRvM6mN43jnzgvo26ZJrTy3iIQvlUMtuXdEJwLO8fSnWWzbX8jzY/uR0qhBSJ9z6bYDPPjuKrbkFfLNAa356VXdaBwXHdLnFJG6wZMxBzN7wswyzWyVmf3TzJIq3PewmW0ysw1mdpkX+ULlhyM78+y3+rJ+zxGu+tN8Fm4JzTQbO/Yf5Z43l3HjCws4XhJg0riB/O7Gc1UMIlJtXg1IzwR6OufOBTYCDwOYWXdgDNADuBx43swiPcoYEtf0bsXUe4bQqEEU3/rrQh54ZyU5R4pqZNt5RwP86sO1jHhqLrPX53LviE7MuP8iLuzUvEa2LyL1hyeHlZxzMyrcXAjcGPx6NDDZOXcc2Gpmm4CBwIJajhhSnVMSeX/CEJ6bvYm/f7GNf63awx0Xtudbg9qQ2jjujLZVWhZg8dYDvLZgO5+sPUZkxHa+0S+dH13aOeSHrUSk7jLnvD290sw+BP7hnHvdzJ4DFjrnXg/eNxH4yDk3pYo/Nx4YD5CSktJ/8uTJIctYUFBAQkJCSLadezTA2xuKWZpThgFdm0YwKDWK9o0jSI2PICbyv88oKg04co86duYHWJVXxsq8UgpKID4ahqQ4Lu/YkKYN/HuGcihfy5qknDUnHDJC/cw5fPjwDOfcgKruC9meg5l9ClR12e0jzrn3g495BCgF3jjxx6p4fJXt5Zx7CXgJYMCAAW7YsGFfN/IpzZ07l1Bu/+YrYdu+Qt5fsZupK3bxytpCACIM0ps0JCYqAuccpQHHroPHKA1eL9E4LppRPdMY0a0FI7qmsOjLz0OasyaE+rWsKcpZc8IhIyjnyUJWDs65kV91v5ndClwNjHD/2X3JBlpXeFg6ULfW3jyFdsnx3DeyE/eO6MjmvEI27M1nQ04+W/cV/ntt6ogI4+pzU+nYIoGOzRPplppIVKR/9xJEJHx5MuZgZpcDPwEuds4drXDXB8CbZvYU0AroBCz2IKJnzKz8l3+LBK4i1es4IlJPeXWdw3NALDAzeJXuQufcnc65tWb2NrCO8sNN9zjnwmvVHBGROsCrs5U6fsV9jwGP1WIcERE5iQ5Yi4hIJSoHERGpROUgIiKVqBxERKQSlYOIiFSichARkUo8n1upJphZHrA9hE+RDOwL4fZrSjjkDIeMoJw1KRwyQv3M2dY5V+W0zXWiHELNzJaeanIqPwmHnOGQEZSzJoVDRlDOk+mwkoiIVKJyEBGRSlQO1fOS1wGqKRxyhkNGUM6aFA4ZQTn/i8YcRESkEu05iIhIJSoHERGpROVwhszsATNzZpbsdZaTmdmjZrbKzFaY2Qwza+V1pqqY2RNmlhnM+k8zS/I6U1XM7CYzW2tmATPz1SmOZna5mW0ws01m9pDXeapiZi+bWa6ZrfE6y1cxs9ZmNsfM1gf/ve/zOtPJzKyBmS02s5XBjL8K9XOqHM6AmbUGRgE7vM5yCk845851zvUBpgG/8DjPqcwEejrnzgU2Ag97nOdU1gA3APO8DlKRmUUCfwauALoD3zKz7t6mqtIrwOVeh6iGUuDHzrluwPnAPT58PY8DlzjnegN9gMvN7PxQPqHK4cz8EXgQ8OUovnPuSIWb8fg35wznXGnw5kLK1wr3HefceufcBq9zVGEgsMk5t8U5VwxMBkZ7nKkS59w84IDXOU7HObfHObcs+HU+sB5I8zbVf3PlCoI3o4MfIX1/qxyqycyuBXY551Z6neWrmNljZrYTGIt/9xwquh34yOsQYSYN2FnhdjY++2UWrsysHdAXWORxlErMLNLMVgC5wEznXEgzerWGtC+Z2adAyyruegT4KXBp7Saq7KsyOufed849AjxiZg8DE4Bf1mrAoNPlDD7mEcp36d+ozWwVVSenD1kV3/PlXmI4MbME4F3ghyfthfuCc64M6BMco/unmfV0zoVsPEflUIFzbmRV3zezXkB7YKWZQflhkGVmNtA5t7cWI54yYxXeBP6FR+VwupxmditwNTDCeXixzRm8nn6SDbSucDsd2O1RljrBzKIpL4Y3nHPveZ3nqzjnDpnZXMrHc0JWDjqsVA3OudXOuRbOuXbOuXaUvzn71XYxnI6Zdapw81og06ssX8XMLgd+AlzrnDvqdZ4wtAToZGbtzSwGGAN84HGmsGXl/+ObCKx3zj3ldZ6qmFnzE2f1mVkcMJIQv79VDnXLb81sjZmtovwQmO9OyQt6DkgEZgZPu33B60BVMbPrzSwbuAD4l5l94nUmgOBg/gTgE8oHT992zq31NlVlZvYWsADoYmbZZjbO60ynMAS4Bbgk+PO4wsyu9DrUSVKBOcH39hLKxxymhfIJNX2GiIhUoj0HERGpROUgIiKVqBxERKQSlYOIiFSichARkUpUDiIiUonKQUREKlE5iISAmZ0XXK+igZnFB+fg7+l1LpHq0kVwIiFiZr8GGgBxQLZz7nGPI4lUm8pBJESC8x4tAYqAwcFZNUXCgg4riYROUyCB8nmkGnicReSMaM9BJETM7APKV2lrD6Q65yZ4HEmk2rSeg0gImNl3gFLn3JvBNZ+/NLNLnHOzvc4mUh3acxARkUo05iAiIpWoHEREpBKVg4iIVKJyEBGRSlQOIiJSicpBREQqUTmIiEgl/w9YsSRc/svkHQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# generujemy wartości x...\n", + "x = np.linspace(-4.2,3.1,100)\n", + "\n", + "# generujemy wartości funkcji\n", + "y = 16 - 12*x - 8*x*x +3*x**3+x**4\n", + "\n", + "# rysujemy wykres\n", + "plt.figure()\n", + "plt.plot(x, y)\n", + "\n", + "plt.xlabel('x')\n", + "plt.ylabel('f(x)')\n", + "\n", + "# powtarzamy dla pozostałych funkcji\n", + "\n", + "plt.grid()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABAFUlEQVR4nO3dd3hdZ5Xo/+86R82SLMmq7mqWW+zYsRXLJXbs9ARIgAmQACHA8PNkIHOZuUMJcGd+TGFghqHNBQYCBMJMIAQIk5A41bbi2I573CXZstzkol4sy+rr/nGOgqLItso5Z+8trc/z6NEpu6yts4/Wfst+X1FVjDHGmKHyOR2AMcYYb7IEYowxZlgsgRhjjBkWSyDGGGOGxRKIMcaYYYlyOoBISk9P15ycnJBv9+LFiyQkJIR8u5Hi9fjB+8fg9fjB+8fg9fghfMewe/fuWlXN6P/6mEogOTk57Nq1K+TbLS4uZvXq1SHfbqR4PX7w/jF4PX7w/jF4PX4I3zGIyMmBXrcqLGOMMcNiCcQYY8ywWAIxxhgzLJZAjDHGDIslEGOMMcPiaAIRkcdEpFpEDl7mfRGR/xCRchHZLyKL+rx3h4iUBd97JHJRG2OMAedLIL8A7rjC+3cCBcGftcB/AoiIH/hB8P25wP0iMjeskRpjjHkbR+8DUdVNIpJzhUXuAX6pgTHnt4lIiohMAnKAclWtABCRJ4PLHg5zyK6gquw51cix6haSxkWRNC6a/IxEspLinA7NjBJ1Le0cOttM6flmstMSuHFmBnHRfqfDMi7j9hsJpwCn+zyvDL420OtFA21ARNYSKL2QlZVFcXFxyINsaWkJy3b761Fld1U3Lx7v5FhTz9ve8wvcnhPNe/KjGRclQ9pupOIPJ68fg1viL6vv5heH2jl38e3zBMX44dp0P3fmRpOfMnAiccsxDJfX44fIH4PbE8hA/wn1Cq+/80XVR4FHAQoLCzUcd2lG4g7WxtYOPv7znew93cj01Hj+8Z5cVs/M5EJ7J02XOnl6zxl+t7uSnbU+/s+75nDPwimD3rbdges8p+Pv7O7hu68e4Yc7jzE9NZ4v3zideVOSmZU1ntLzF3jh4DleOHCef93Zwb+8fz73Lp76jm04fQwj5fX4IfLH4PYEUglM6/N8KnAWiLnM66NSbUs7H/3pdipqLvKtDyzgvddNwe97ew5dnp/OA0uz+f+fPcRnn9zLpY5u7lsy3aGIjZc0tnbw4M93su90Ix8qnMbfv2cuCbF/+tewYkYsK2ak87nbZvHpJ/bwud/uo7y6hS/cPgufb2ilXTO6ON2IfjXPAh8L9sZaCjSp6jlgJ1AgIrkiEgPcF1x21KlqbuNDP36DE3UX+dnHC/mzxVPfkTx6LZiWwlN/sYzVszL48h8O8OLBcxGO1nhNV3cPD//qTQ6fbeKHH1nEv9577duSR18p8TE8/sklfLhoOj967Rhf/P1+bErssc3pbry/Bt4AZolIpYj8uYg8JCIPBRdZB1QA5cBPgE8DqGoX8DDwElACPKWqhyJ+AGHW1tnNR3+6nfNNbTz+iSWsLHjHYJjvEBPl44cfWcTCaSn8r1/vZWt5bQQiNV71z8+XsLm8ln9533zumj/pqstH+3187b3zeHjNDH67u5Lf7qqMQJTGrZzuhXX/Vd5X4DOXeW8dgQQzav3bi2UcrW7hl59cQlFe2qDXi4+J4rGPX8+HfryNtf+1m5f+ZhVTUsaFMVLjRb/afopfbD3Bp27I5QOF066+QpCI8De3zuTN0w383TMHuXZaMrMnJoUxUuNWbq/CGrO2HqvlsS3HeXBZNqtmXr3k0V9KfAw/fbCQ7h7l7/7noFU1mLc5dLaJv3/mIDfOzOBLd80Z8vp+n/DdD11H0rhoPvPEHi62d4UhSuN2lkBcqLmtk8//dj956Qk8cufQv9y9pqXG87e3zWRDaTXPH7D2EBOgqnz12UMkjYvme/ctvGyb2tVkjI/le/ct5HjtRf7hj6OuBtkMgiUQF/qnPx7mXNMlvvXBBYyLGdnNWx9fnsP8Kcl89dnDNLV2hihC42XP7D3LzhMNfOH2WaTEx4xoW8vz0/n/Vubx1K5KTjR1hyhC4xWWQFzm4Jkmfru7krWr8rlu+oQRby/K7+Pr759PQ2sHX3+hJAQRGi9rae/iX9aVcO3UZD44hHaPK/nMTTOYEB/Nb8o6rKp0jLEE4jLffuUIyeOi+fSa/JBtc96UZD51Qy5P7jzNwTNNIduu8Z7/u/4o1Rfa+Ye7rwnZPRxJcdF89uYCSup72FhWHZJtGm+wBOIiu0/Ws6G0mr+4MY+kuOiQbvszN81gfFwU399QHtLtGu84UXuRx7Yc597FU0NSuu3rw0XZZMULX19XSld3z9VXMKOCJRCXUFW++VIZ6YmxfHx5Tsi3nxQXzSdW5PLiofOUnm8O+faN+/3otWOICF+4fVbItx0T5eMDM2M4Wt3Cb3fbvSFjhSUQl9hSXse2ino+syaf+Jjw3J7zyRU5JMT4rRQyBlU3t/H0njN8YPFUMsM0avPiLD+F2RP43qtH6bRSyJhgCcQFVJV/f7mMyclxfLgofONXpcTH8ODyHJ4/cI7y6gth249xn59tOU5XTw9rV+WFbR8iwqfX5HO+uY111m18TLAE4gK7Tzaw93Qjf7lmBrFR4Z1z4c9vyCUuys8PNh4L636MezS3dfKrbae4c/4kstMSwrqv1TMzyctI4Gebj1uPrDHAEogLPP7GScbHRfFniwY/BPtwpSXG8sCybJ7Ze4ZTda1h359x3hPbTnGhvYu/vDF0Pfsux+cTPrkil/2VTew80RD2/RlnWQJxWHVzGy8cOMcHC6eFre2jv0+uyEVE+NWOUxHZn3FOW2c3j205zsqCdOZNSY7IPv9s0VRS4qP52eaKiOzPOMcSiMN+teMUXT3KA0uzI7bPiclx3Dw7k9/uOk1HlzV2jmZ/3HeWmgvt/MWq8Jc+eo2L8fORoum8fLiKk3UXI7ZfE3mWQBzU0dXDE9tPsXpWBjnp4a2b7u8jS7Opu9jBS4fOR3S/JrJ+s/M0eRkJrJgx+NGcQ+Fjy3KI8gk/33Iiovs1kWUJxEEvHTpPzYV2HgzDfR9Xs3JGOtNSx/HE9pMR37eJjPLqFnadbOBDhdMQiezMgVlJcbz72sn8bncllzpsjKzRyhKIg375xgmy0+K5cRATRYWazyfcv2Q62yrqOdti1Vij0VO7ThPlE96/6J3zl0fCh66fRkt7l5VyRzGnZyS8Q0TKRKRcRB4Z4P3Pi8je4M9BEekWkdTgeydE5EDwvV2Rj35kyqsvsPNEAx8tynZsXukPLJ5GlE8oPm2j9I42HV09PL2nkpvnZJIxPtaRGJbkpDItdRy/szvTRy3HEoiI+IEfAHcCc4H7RWRu32VU9ZuqulBVFwJfAl5T1fo+i6wJvl8YqbhD5ek9Z/D7hPdeF/6uu5eTMT6W2+dNZMvZLto6rZphNNlQWkVtSwf3XR++G1OvxucT/mzRVLYcq+VM4yXH4jDh42QJZAlQrqoVqtoBPAncc4Xl7wd+HZHIwqynR3lm71lWFqQ7dnXY6yNLpnOxE6tmGGV+s/M0E5PihjWbZSj92aKpqMIf9lgpZDRyck70KcDpPs8rgaKBFhSReOAO4OE+Lyvwsogo8GNVffQy664F1gJkZWVRXFw88sj7aWlpGdJ2S+u7OdPYxrun94QlnqHoUSUlRvn5+gMkNx51NJaRGOpn4DahjL++rYfisku8Oz+a1ze9FpJtDsbljmHWBB//tfko10hlxBvzh8Lr5xBE/hicTCADnUmXG/vgPcCWftVXK1T1rIhkAq+ISKmqbnrHBgOJ5VGAwsJCXb169QjDfqfi4mKGst0Xf7+fhJiz/PW9a0Y842AoLC17ifWnu1m4ZPmIZ6hzylA/A7cJZfw/2FiOUsbn338D09PiQ7LNwbjcMdQknubzv9tPUt4CFmenRiyeofL6OQSRPwYnq7Aqgb5Tok0Fzl5m2fvoV32lqmeDv6uBPxCoEnO9ts5unj9wjtvnTXRF8gBYOimKzm7lhYNWjTUaPLf/HIump0Q0eVzJXfMnER/jt8b0UcjJBLITKBCRXBGJIZAknu2/kIgkAzcCz/R5LUFExvc+Bm4DDkYk6hHaUFrNhbYu3n+dM10rB5Kd5CMvPYFn914ufxuvOFbTQsm5Zt517WSnQ3lLQmwUd86bxHP7zllnjVHGsQSiql0E2jReAkqAp1T1kIg8JCIP9Vn0fcDLqtp3TIQsYLOI7AN2AM+r6ouRin0knt5zhqykWJblR/bO4CsREd6zYDLbjtdxvqnN6XDMCDy//xwi8K75k5wO5W3uXjiZC+1dbD5a63QoJoQcvQ9EVdep6kxVzVfVrwVf+5Gq/qjPMr9Q1fv6rVehqguCP9f0rut2ja0dFJdVc8/CKfgduvfjcu5eOBlVeG6/lUK87Ln9Z7k+O5WJyeGZNGq4luenkTwumnUHbZ6Q0cTuRI+gVw5X0dWjvPtad10dAuRnJDJ/SjLP7rME4lVHqi5wpKqFdy9w3/kV7fdx69wsXjlcZQN4jiKWQCLopUPnmZIyjvkRGlZ7qO5eMJn9lU0cr7URVL3ouf3n8AncMW+i06EM6K75E7nQ1sWWY1aNNVpYAomQlvYuNh2t5fZrJrq2L3zvlesLVs3gOarKc/vPUpSbRuZ4d1Vf9VoxI53xcVGs22/n12hhCSRCisuq6ejqce3VIcCk5HEsmJrMy4eqnA7FDFHp+QtU1Fx0ZfVVr9goP7fOyeLlw1V0dls11mhgCSRCXjx4nvTEGBZnT3A6lCu67ZqJ7D3dSFWz9cbyknUHgtVX17j3AgXgzvmTaLrUyRvH6pwOxYSAJZAIaOvsZmNpNbfOnei63lf93To3C4BXS6wU4iWvHK7i+pxU0hKdHVvtalYWpJMQ47dq0lHCEkgEbCmv5WJHt6urr3oVZCaSkxZv1Vgecrq+ldLzF95K/m4WF+3n5jlZvHSoii6rxvI8SyAR8OLB84yPi2JZnntuHrwcEeG2ayay9VgtF9psnhAvWB8sLd48x/0JBAK9xOovdrDnVKPToZgRsgQSZl3dPbxSUsUtc7KIifLGn/u2uVl0divFZTVOh2IG4dWSamZkJpKbnuB0KIOysiCdaL+wvtRKuV7njf9oHrbzRAONrZ3cfo03rg4Brps+gfTEGF4+bF9wt2tu62RbRR23eKT0ATA+Lpqi3DQ2lFQ7HYoZIUsgYbaxrJpov7DSgXnPh8vvE26encXG0mrau2zwOzd7rayGrh7l1rmZTocyJDfNzuRodQun6lqdDsWMgCWQMNtQWk1RbhoJsU5OvTJ0t12TRUt7F9sq6q++sHHMqyVVpCXEsHCau7uH93fznEDCs2osb7MEEkan61spr25hzWxvXR1C4K7huGgfG0utmsGtOrt72FhazU2zM13fPby/7LQE8jMS2GDnl6dZAgmjjWWBL8eaWd6pvuoVF+1nWV4axWX2BXernSfqaW7r8kzvq/5unpPFtoo6Wtq7nA7FDJMlkDDaUFpNTlo8eRmJTocyLKtnZXKirtUGV3Sp9SXVxET5WFmQ7nQow3LT7Ew6u5XXj1hvP69yNIGIyB0iUiYi5SLyyADvrxaRJhHZG/z5+8Gu67RLHd28cazOk9VXvVYHS05WCnGn147UUJSb6rn2tV6LsyeQFBfFeqvG8izHEoiI+IEfAHcCc4H7RWTuAIu+rqoLgz//OMR1HfNGRS3tXT2smeXdBJKdlkBeeoLdD+JClQ2B9rUbZ3qverRXtN/HjbMy2VhaTU+POh2OGQYnSyBLgPLg7IIdwJPAPRFYNyI2lFYTH+OnKC/V6VBG5MZZGWyrqLO5rF1m05HAnBqrPdi+1tfNszOpu9jB/jNNTodihsHJBDIFON3neWXwtf6Wicg+EXlBRK4Z4rqOUFU2ltawYkY6sVF+p8MZkdWzMmnv6uGNChs91U1eO1LNlJRx5Hu0fa3XDcH2G2sH8SYnK08H6nfYvxy7B8hW1RYRuQv4H6BgkOsGdiKyFlgLkJWVRXFx8XDjvayWlpa3bffMhR7ONF7i1indYdlfqPWPv6+ObiXGB0+sfxM5596RXq90DF4wlPi7epTXSlspmhTFa6+9Ft7AhmC4n0F2ko8/7ipnvv9M6IMaAq+fQxD5Y3AygVQC0/o8nwq8bUJuVW3u83idiPxQRNIHs26f9R4FHgUoLCzU1atXhyT4voqLi+m73Z++XgGUsPY9NzA5ZVzI9xdq/ePvb8WpHZTXXrziMk672jG43VDi315RR1v3Nu5ffS2r57lnAqnhfgZ3tZXyk00VLF66gvFx0aEPbJC8fg5B5I/BySqsnUCBiOSKSAxwH/Bs3wVEZKIE538VkSUE4q0bzLpO2nS0lvyMBE8kj8Gw7rzu8tqRGvw+YfkMb3bf7W9VQQZdPWqTTHmQYwlEVbuAh4GXgBLgKVU9JCIPichDwcXuBQ6KyD7gP4D7NGDAdSN/FO/U1tnNjuN1nhr76mp6e5JZd1532HS0hsXTJ5Dk4NV6KC3OnkB8jJ9NR60dxGsc7UCuquuAdf1e+1Gfx98Hvj/Ydd1g98kG2jp7PHtz10Cmp8WTkxbPlvJaPrEi1+lwxrSaC+0cPNPM52+f5XQoIRMT5WNZXhqvH611OhQzRHYneoi9frSWKJ9Q5IHJo4ZixYx0tlXU02mzyDnq9eBVupfv/xjIqpkZnKxr5WSdVZN6iSWQENtcXsOi7AkkevTu4MtZWZBOS3sXe083Oh3KmLbpSA1pCTHMnZTkdCghtSqYEDdZd15PsQQSQnUtgeqFlaOkcbOvZXnp+AQ2WzWDY1SVzeV1rJiRjs9jo+9eTU5aPNNSx7HJzi9PsQQSQluCvUhWjrLqBYDk+GjmT01hc7l9wZ1ypKqF2pZ2bhiFFygigUnX3jhWZ9WkHmIJJIReP1JD8rho5k9JdjqUsLhhRhp7Tzdyoa3T6VDGpC3B5L1iFHXQ6GtVQYZVk3qMJZAQCVQv1LJiRprnJvcZrBUz0unuUZul0CFbymvJSYtnyii5v6i/ZXlp+ORPidK4nyWQEDlW08K5pjZumDH6qq96Lc6eQFy0z77gDujs7mFbRaD9Y7RKjo9m3pRktpbbDYVeYQkkRHobl0fT/R/9xUb5WZKb9lZXUhM5+ysbudjRPSrbP/panp/Om6cbaO2wWQq9wBJIiGw9Vse01HFMS413OpSwWjkjnWM1FznXdMnpUMaUzUfrEIFl+aPr/qL+VsxIo7Nb2XHcqkm9wBJICPSosq2ijuV5o/vqEHirCsW680bWlvJa5k1OJiU+xulQwqowO5UYv8/GxfIISyAhcKq5h+a2LpbPGN1XhwCzJ44nPTHG2kEi6GJ7F2+ebhjV7R+9xsX4uW56CluO2fnlBZZAQuBwfWC2vtFevQDgCw7T8kZFHao2DWkk7DhRT2e3smIMXKBAoJR76Gwzja0dTodirsISSAiU1PVQkJlI5vg4p0OJiOX5aVQ1t9vw7hGy5WgtMVE+rs/x9vTIg7ViRhqqWDWWB1gCGaGOrh6ONHSzfAyUPnotCw4UadPcRsbWY3Usnj6BuGhvT488WNdOTSEhxm/VWB5gCWSE9lc20t4Ny/JHf/10r9z0BCYmxbHVrhDDrrG1g5LzzWOierRXtN/HktxUux/EAyyBjNCW8joEWJo3NqoXIDBu0bL8NLZbO0jYbauoR3VstK/1tWJGOhW11l3c7RxNICJyh4iUiUi5iDwywPsfEZH9wZ+tIrKgz3snROSAiOwVkV2RjfxPth6rZXqSb9R3r+xvWX4atS0dHK1ucTqUUW1bRR3jov0smJridCgR1ZswrR3E3RxLICLiB34A3AnMBe4Xkbn9FjsO3Kiq1wL/BDza7/01qrpQVQvDHvAALnV08+apRuakjo266b5620G2WnfesNpWUUdhzgRiosZWZcGciUkkj4tmm7WzuZqTZ+USoFxVK1S1A3gSuKfvAqq6VVUbgk+3AVMjHOMV7T7ZQEd3D3PTxtaXG2BaajxTJ4yzhvQwqmtpp/T8BZaOstktB8PnE4pyU23gTpdzctq8KcDpPs8rgaIrLP/nwAt9nivwsogo8GNV7V86AUBE1gJrAbKysiguLh5JzG/zuyMd+ASmxLSFdLuR1tLSMqz4c+M72Xykig0bN+ITZ0cgHu4xuMVA8e88HxgPKrbxJMXFlQ5ENTSh/gwyejp5ub6D37+wgbRx4b9I8/o5BJE/BicTyED/cQZskRWRNQQSyA19Xl6hqmdFJBN4RURKVXXTOzYYSCyPAhQWFurq1atHHHiv/1uylQXTlLTkTkK53UgrLi4eVvwNyZW8/pt9ZM5cxDyH50AZ7jG4xUDxr/+fg8THVPLg3WuI9ru/lBvqzyDrXDNPlL4OmTNZvTj8lQ9eP4cg8sfg5FlZCUzr83wqcLb/QiJyLfBT4B5Vfau+RFXPBn9XA38gUCUWMa0dXew73Tgmqxd6LQuO/WX11OHxRkUd1+ekeiJ5hMOsrPFMiLd2EDdz8szcCRSISK6IxAD3Ac/2XUBEpgNPAw+o6pE+ryeIyPjex8BtwMGIRU6g/aOrR8d0ApmYHEdeeoL1lAmDmgvtlFe3jLnuu30F2kHSrJ3NxRxLIKraBTwMvASUAE+p6iEReUhEHgou9vdAGvDDft11s4DNIrIP2AE8r6ovRjL+bRV1+H1CYfaESO7WdYry0thxop7uHrsfJJR6r7qXjeELFAjcX1XZcInT9a1Oh2IG4GQbCKq6DljX77Uf9Xn8KeBTA6xXASzo/3okba+o59qpySTEOvondNzSvFR+veMUJeeaHW8HGU3eqKhjfGwU10xOcjoUR/WO8LD9eP2on2vHi8Zm5eoItXZ0sa9ybLd/9CrKDfwNrJ46tLZV1HF9bipRY7T9o1dBZiKpCTFWTepSY/vsHKY9Jxvp7B7b7R+9JibHkZueYP31Q6i6uY2Kmotjanicy/nT/SCWQNzIEsgwWPvH2xXlprLjeJ21g4TI9uB0rr2lu7FuWX4aZxqtHcSNLIEMw7aKOmv/6GNpXhrNbV2Unm92OpRRYfvxOhKt/eMtS236ANeyBDJE1v7xTkXBqharxgqN7RX1FOZMGPPtH71620G22/nlOnaGDpG1f7zTpORxZKfFs92uEEestqWdo9UtVn3Vh4iwJCeV7cft/HIbSyBD1Nv+sdjaP96mKDeVHSfq6bF2kBHZ0dv+YQ3ob1MUvB/kTKPND+ImlkCGaPvxOuZNSSbR2j/eZmleGo2tnZRVXXA6FE/bXlFHfIyf+XZPzdv0lsislOsug0ogIuITketE5F0icpOIZIU7MDdq6+xm3+kmluba1WF/RXl2P0gobD9ez+LsCWN2/KvLmT1xPMnjoq0dxGWueJaKSL6IPAqUA98A7gc+TWD0220i8gkRGTNn+p5Tgfk/rHrhnaakjGNa6jhLICNQf7FjzM7/cTU+n3C9tYO4ztX++f8z8N9AvqrerqofVdV7gzME3g0kAw+EO0i32F5Rj0+gMMcSyECKctPYcdzaQYbrrfYPK+EOaGleKifqWjnf1OZ0KCboiglEVe9X1U2q+o7/CKpararfVdXHwxeeu2w/XsfcyUkkxUU7HYorFeWm0tDaSXmNzZM+HNuP1xEX7ePaMTb/+WD1lsysFOIeg20D+ScRierzPElEfh6+sNynvSsw/7l1r7y8t77gVo01LNsr6lk0fezNfz5YcyYlMT4uyu43cpHBnqlRwHYRuVZEbiMwl8fu8IXlPvsrm2jv6mGJVS9c1tQJ45iUHMe24/YFH6qLnUrJ+Wa7QLkCv7WDuM6g+qKq6pdEZD2wHWgAVqlqeVgjc5neq+ol1v5xWSKBge82l9ehqojD86R7yZGGblTt/o+rKcpNZUNpNdUX2sgcH+d0OGPeYKuwVgHfA/4RKAa+LyKTwxiX62w/Xs/sieOZkBDjdCiuVpSXRm1LOxW1F50OxVPK6ruJifKxcFqK06G4Wm938R1WynWFwVZh/TvwAVX9uqp+GHgU2DDSnYvIHSJSJiLlIvLIAO+LiPxH8P39IrJosOuGUmd3D7tPNljvmEHo/RtZf/2hKavvYeG0FOKi/U6H4mrzJieREOO388slBptAlqnq4d4nqvo0sGIkOxYRP/AD4E5gLnC/iMztt9idQEHwZy3wn0NYN2QOnGmitaP7rasfc3m56QlkjI+1euohaGnv4kRzj12gDEKU38diawdxjavdSPhREfGpanf/91S1Lnij4Q3D3PcSoFxVK1S1A3gSuKffMvcAv9SAbUCKiEwa5Loh03u1Yw3oV9fbDrK9op4Ben+bAew6UY9i838MVlFuKkeqWqi/2OF0KJ5wvqmNT/5iJ/srG0O+7as1oqcBb4rIbgK9rmqAOGAGcCNQCwy3+mgKcLrP80qgaBDLTBnkugCIyFoCpReysrIoLi4ecqBHj3VQkOLj4K43Bny/paVlWNt1i1DHP6Grk/PNHfz2hY1kxkemS6qXP4PflnXgE+XiyQMUn/Fux4NIfQYxjYHr2Z8/t4nFWaEbk87L51CvgY5h29kuNpS2s2pCM/Xloa0iveJfX1W/JyLfB24iUGV1LXAJKAEeUNVTI9j3QN+U/pesl1tmMOsGXlR9lECbDYWFhbp69eohhBhwtVWKi4sZznbdItTxT666wH8d3gSZBawunBay7V6Jlz+D/zi8hbzkbm6/ZY3ToYxIpD6D5V09fGvPS7TET2L16mtCtl0vn0O9BjqGl/9wgPGxZ3ngPTfh94X2AuWq6TtYffVK8CeUKoG+/12mAmcHuUzMINY1Duk7AdAHI5RAvOpSRzf7K5u4LdtGdx6smCgfi6ZPsIb0QdpeUUdhzoSQJw8YfDfeDBH5sog8KiKP9f6McN87gQIRyRWRGOA+4Nl+yzwLfCzYG2sp0KSq5wa5rnGITQA0eHtONdDVo8xOtbvPh6IoN42S8800tXY6HYqr1Vxo51jNxbB1ABrsZc8zwOvAq8A7GtSHQ1W7RORh4CXADzymqodE5KHg+z8C1gF3ERgNuBX4xJXWDUVcJjSK8lJ58dB5zjReYkrKOKfDca3tFXX4BAomWPfdoViSm4oq7DxRzy1zx+TsEoMS7gE6B5tA4lX1i6HeuaquI5Ak+r72oz6PFfjMYNc17tF3AqD3L5rqcDTute14PfOmJDMuqsvpUDzluukpxPh97LAEckXbjwcmKJsXpgnKBltufk5E7gpLBGZUsgmArq6ts5u9pxtteJxhiIv2s3Baig3ceRU7wjxB2WC3+lkCSeSSiDSLyAURaQ5LRGZUsAmArm7v6UY6unpsAqlhKspL5eDZZlrarfQ2kIbgBGXhvEF1UAlEVcerqk9Vx6lqUvB5UtiiMqNC7wRAVc02AdBAtlfUIwLX2w2qw1KUm0Z3j7LrhJVyB7Ij+HcJ5wgaV7sTfXbw96KBfsIWlRkVettBbJrbgW2rqGPOxCSSx9kEZcOxKDuFKJ+w3QZWHND2inpio3xcOzU87R9w9Ub0/03gLu5v9Xmt7w17N4U8IjNqzJ2cxPjYKLYfr+eehVOcDsdV2ru62XOqgY8UZTsdimfFx0Rx7dRkawe5jO3H61g0fQKxUeHr4Xe1KW3XBh/+J3CPqq4BNgJNwOfCFpUZFfw+oTBngn3BB9A7QZnN/zEyRXlp7K9sorXD2kH6am7r5PC55rCfX4NtRP8/qtocHDjxVuAXBEfGNeZKivLSOFZzkZoL7U6H4io2QVloLM1Lo6tH2X2ywelQXGXXifrABGVhHqBzsAmk9+bBdwE/UtVnCAwnYswV9fYAsQmA3m5bhU1QFgqF2YEhOqyd7e22VdQTE+XjuukpYd3PYBPIGRH5MfBBYJ2IxA5hXTOGzZuSTHyM37rz9tE7QZl13x25hNgo5k9JtvuN+tlWUcd1EZigbLBJ4IMEhg25Q1UbgVTg8+EKyowe0X4fi7Nt4Lu+9lc2camz2yaQCpGleWnsq2zkUkdIRlnyvOa2Tg6eaYrIBcpg7wNpVdWnVfVo8Pk5VX05vKGZ0WJpXhplVReoa7F2EPhTt2aboCw0ivJS6exW9pyydhAItH/0KO5JIMaMxLL8wIls7SAB24/XMzMrkbTEWKdDGRWsHeTttlXUE+MPf/sHWAIxETA/2A7yhn3BA+0fJ+pt+toQGh8XzbzJSVZNGrStoo6F08Pf/gGWQEwERPt9FOak2hUicOBMExc7ut8qlZnQWJqXxt7TjbR1ju12kNZOjVj7B1gCMRGyLC+NI1Ut1I7xdpA3jgWSqDWgh1ZRXiod3T1jvh3kSEN3sP0jMueXJRATEb0n9FivZthWUcesrPHW/hFihTmp+CRQ/z+WlTX0EOMPTPkbCY4kEBFJFZFXRORo8Pc7jlZEponIRhEpEZFDIvLZPu99VUTOiMje4I/NVeJy86YkkxDjH9PVWB1dPew60WDVV2GQFBfNvCnJbDs2ds8vgNL67oi1f4BzJZBHgPWqWgCsDz7vrwv4W1WdAywFPiMic/u8/x1VXRj8sZkJXS7a7+P63NQx3ZC+r7KRS53ddgNhmCzLT+PN0w1j9n6QC22dnGiK7PwyTiWQe4DHg48fB97bf4HgvSZ7go8vACWADenqYUvz0iivbhmz42JtO1aHSOTqp8eaZXlpdHYru06OzWqsnSfqUSJ7fg12TvRQy1LVcxBIFCKSeaWFRSQHuA7Y3uflh0XkY8AuAiWVAVvPRGQtgSHpycrKori4eOTR99PS0hKW7UZKpOKPaQxcGf78uddZMim0p54XPoN1uy8xNdHH3h1b3/GeF+K/GqePoa1L8Qv8ZuObdJ8Z+hhjTsc/Uk+VthMlSsuJAxSflsjsVFXD8gO8Chwc4OceoLHfsg1X2E4isBt4f5/XsgA/gRLU14DHBhPT4sWLNRw2btwYlu1GSqTi7+zq1mv+/kX98tP7Q75tt38GbZ1dOvMr6/Qfnj004Ptuj38w3HAM7//hFr3n+5uHta4b4h+Ju763Se/413Vh2TawSwf4nxq2Eoiq3nK590SkSkQmaaD0MQmovsxy0cDvgSdU9ek+267qs8xPgOdCF7kJlyi/j+tzJozJdpA3TzXS3tVjDehhtiwvjf987Rgt7V0kxjpVwRJ5DRc7OHyumffNiOzslk61gTwLPBh8/CDwTP8FRESAnwElqvrtfu9N6vP0fQRKNsYDluWnUVFzkfNNY2ue9DeO1eETG/8q3JbnB+ZJ3znGhs3ZfrwOVZiTGpneV72cSiDfAG4VkaMEJqj6BoCITBaR3h5VK4AHgJsG6K77byJyQET2A2uAv4lw/GaYluenA/BGRa3DkUTWGxV1XDM52eY/D7NF2ROI8fvYemxsnV9bj9URH+MnNzmy/9IdKeOpah1w8wCvnwXuCj7eDAzYEqSqD4Q1QBM2cyclkRIfzZbyOt533VSnw4mIts5u9p5q5MHlNv95uMVF+7luesqYqybdUl7LktxUonytEd2v3YluIsrnE5blpbG1vLa3Q8Sot+tEAx3dPW+Vvkx4Lc9P59DZZhpbO5wOJSKqmts4VnOR5Q60r1kCMRG3fEY6Z5vaOFEX2aslp2wuryXKJ9b+ESHL8tNQDQybPxb0jq/mxAWKJRATcSuCV0pbysdGPfWW8loWTZ9AwhjqFeSkBdOSiYv2vfWPdbTbeqyW5HHRzJmUFPF9WwIxEZebnsCk5Lgx0dDZ2NrBwbNNLJ9h3XcjJTbKz/U5qWweIxcoW4/VsTQvFb8vQjcP9mEJxESciLA8P503jtXR0zO620HeOBboXnnDDGv/iKSVBemUV7eM+u7ip+tbqWy45Fj7miUQ44jl+Wk0tHZScr7Z6VDCasuxWhJi/CyYluJ0KGPKimDCHu2lkN5qYCca0MESiHFI7xd8a/norqfeUl5HUV4a0X77qkXSnIlJpCXEjPp2ttfLa8kYH8uMzERH9m9ntXHExOQ48jIS2DKK20HONF7ieO3Ft5KliRyfT1g+I53No7i7eHePsqW8lpUF6QQG7og8SyDGMSvy09lxvJ6Orh6nQwmL3qtfa/9wxsoZ6dRcaOdIVYvToYTFobNNNLZ2srLAufPLEohxzA0F6bR2dI/aeay3lNeSnhjLzCxnqhfGuhXBf6yvH61xOJLweP1o4ALFyRKuJRDjmOX5afh9wqYjo+8LrqpsKa9jxYw0x6oXxropKePIS08Yte0gm4/WMnvieDLHxzkWgyUQ45jxcdEsmp7CplF4hVhWdYHalnZW2PAljrqhIJ3to7CatLWji10n61k1M8PROCyBGEetKsjg4Jlm6lpG1zS3vaWqlTMtgThpxYxANembo6yadPvxejq71fH2NUsgxlG9V1Cjrb/+a0dqmJU1nknJ45wOZUxblp+GT0bfsDmvH6klJsrn+PhqlkCMo+ZNSSYlPppNR0bPF7y1o4udxxu4cZaz1QsGkuKiWTgthdeOjp7zC2BzeQ1FuanERUd2Aqn+HEkgIpIqIq+IyNHg7wmXWe5EcOKovSKya6jrG/fz+4QbZqTz+tGaUdNff1tFHR3dPdzocP20CbhxZib7KxtHTTXp+aY2jlS1OF59Bc6VQB4B1qtqAbA++Pxy1qjqQlUtHOb6xuVWzcyg+kI7pecvOB1KSLxWVsO4aD+FOXZd4warZ2Wg+qdur17XW927ssD5CxSnEsg9wOPBx48D743w+sZFVo6y/vqvHalheX4asVHOVi+YgPlTkklLiKG4rNrpUEKiuKya9MRYZk8c73QojiWQLFU9BxD8nXmZ5RR4WUR2i8jaYaxvPGBS8jhmZiWOinaQE7UXOVHXau0fLuLzCatmZrDpaK3nR3/u6u5h05EaVs/KwOfA8O39hW2GGxF5FZg4wFtfGcJmVqjqWRHJBF4RkVJV3TTEONYCawGysrIoLi4eyuqD0tLSEpbtRoob4s+Na2d9RQsvrd9IrH/oXww3HAPAqyc7AYitr6C4+MSg13NL/CPh5mPI7O6i/mIHv3h2A3kpA5cM3Rx/r7L6bprbusjqrhkw1ogfg6pG/AcoAyYFH08CygaxzleBzw13fVVl8eLFGg4bN24My3YjxQ3xv36kRrO/+Jy+cuj8sNZ3wzGoqv75L3boqn/bMOT13BL/SLj5GOpb2jXnkef02y+XXXYZN8ff6+vrSjT/S89r06WOAd8P1zEAu3SA/6lOVWE9CzwYfPwg8Ez/BUQkQUTG9z4GbgMODnZ94y1LclNJiPGzvtS79dTtXd1sPVZnva9caEJCDAunpVDs8WFzisuqKcyZQFJctNOhAM61gXwDuFVEjgK3Bp8jIpNFZF1wmSxgs4jsA3YAz6vqi1da33hXTJSPVTMz2FBa5dnuvDuPN9Da0c0qF/SOMe+02uPdec80XqL0/AVumu2eJl9HEoiq1qnqzapaEPxdH3z9rKreFXxcoaoLgj/XqOrXrra+8babZmdS1dzOobPenKXw1ZIqYqN8Nv+HS3m9O+/GYOl8zawxnkCMGcia2ZmIwAYPVmOpKq+WVLGyIJ1xMdZ91416u/Nu9Gh33uKyaqZOGOfY7IMDsQRiXCM9MZaF01JYX1LldChDVlZ1gcqGS9wyJ8vpUMxl+HzCjbMyKC6roavbW6PztnV2s6W8jptmZ7pqegBLIMZVbp6dyb7KJqovtDkdypC8ejiQ9G6a457qBfNOt83NoulSJztOeKvWe1tFHZc6u11VfQWWQIzL3DQ7cAVfXOqt3jKvlFSzcFqKo5P7mKtbNTOD2CgfLx/yVil3Y2k1sVE+luWnOR3K21gCMa4yZ9J4JiXHsb7UO1/w6uY29p1u5Na5Vn3ldvExUawsSOeVw97p7dfTo7x0qIpVMzMcH323P0sgxlVEhJtmZ/L60VraOrudDmdQeu9dsfYPb7ht7kTONF7yTG+//WeaON/cxh3XDDSwh7MsgRjXuWVOFq0d3Ww95o3ulq8ermJaamA8L+N+N8/JxCfw8mFvlHJfPHieKJ9wswvb1yyBGNdZPiON8XFRrDtw3ulQrqq1o4vN5bXcPDvLVb1jzOWlJcZSmJ3Ky4fcf36pKi8ePMey/DRS4mOcDucdLIEY14mN8nPrnCxePnSeji53d7fcdKSW9q4ea//wmNuuyaL0/AVO17c6HcoVHalq4URdK7e7sPoKLIEYl7pr/iSa27pcX431/IFzpCbEUOTw3NRmaHoTvtursV48eB6RQPdjN7IEYlzphoJ0EmOjeMHF1ViXOrpZX1LFHfMmEuW3r5KXZKclMCtrPC+5vBrrxUPnWTx9AplJ7uwebme9caW4aD83z8nkpcPn6XTpXcMbSqtp7ejm3fMnOR2KGYY75k1k54l6zje586bVU3WtlJxr5o557qy+AksgxsXunDeJxtZOtle4867h5w+cJT0xlqI8d93cZQbn7oWTUYXn9p91OpQB9ZaO3Nr+AZZAjIutnpVBfIyf5w+cczqUd7jY3sWG0mrumj8RvwumFjVDl5+RyLwpSfxxnzsTyHP7z3LN5CSmpcY7HcplWQIxrhUX7eem2Zm8fOi86wa/e7WkirbOHt597WSnQzEjcPeCyeyrbOJ47UWnQ3mbYzUt7Kts4n3XTXE6lCuyBGJc7a75k6i72MEbFXVOh/I2z+0/R1ZSLIXZE5wOxYzAexZMRgTXlUL+580z+CSQ4NzMkQQiIqki8oqIHA3+fse3UERmicjePj/NIvLXwfe+KiJn+rx3V8QPwkTETbMzGR8XxdN7zjgdylua2zp5rayGu+ZPwmfVV542KXkc1+ek8szeM64ZG6unR/nDm2dYMSPdtb2vejlVAnkEWK+qBcD64PO3UdUyVV2oqguBxUAr8Ic+i3yn931VXdd/fTM6xEX7uXvBZF44eI4LbZ1OhwPAy4eq6Oi26qvR4p6FkzlWc5FTF9xRTbr7VAOVDZdcX30FziWQe4DHg48fB957leVvBo6p6slwBmXc6d7FU2nr7GGdSxrTn9p1mtz0BBZNT3E6FBMCd82bRJRP2HbOHYN3Pr3nDOOi/a7ufdVLnCi2iUijqqb0ed6gqpetTBaRx4A9qvr94POvAh8HmoFdwN+qasNl1l0LrAXIyspa/OSTT4boKP6kpaWFxETvDqTn9vhVlS9vvsT4GOHLReMGXCZSx3D+Yg+PvH6JD8yM5l15oRubyO2fwWB4+Ri+s7uNk01dfHtNAj4HxzTr7FE+u6GVBRl+/mLB0KuvwvUZrFmzZreqFr7jDVUNyw/wKnBwgJ97gMZ+yzZcYTsxQC2Q1ee1LMBPoAT1NeCxwcS0ePFiDYeNGzeGZbuR4oX4f7DxqGZ/8Tk9XtMy4PuROoZ/WXdY8770vFY1Xwrpdr3wGVyNl4/h+f1nNfuLz+mGkipH43jhQCCO4rLqYa0frs8A2KUD/E8NWxWWqt6iqvMG+HkGqBKRSQDB31ea5f5OAqWPtwatUdUqVe1W1R7gJ8CScB2HcYf3XzcVn8DTeyodi6Gzu4ff7z7DTbMzbebBUebWuVkkxwpPbHe2lvz3e86QnhjLCpfNPHg5TrWBPAs8GHz8IPDMFZa9H/h13xd6k0/Q+wiUbMwoNjE5jhsKMvj9njP09DjTW2ZDaTW1Le18qHCaI/s34RPt97FyShQbSqs523jJkRjONF5ifUkV9y6e6pmx1ZyK8hvArSJyFLg1+BwRmSwib/WoEpH44PtP91v/30TkgIjsB9YAfxOZsI2T7l08lTONl9ji0Ai9T+08Teb4WFbPynBk/ya8bpwahQJP7jztyP6f2BYo/Xx06XRH9j8cjiQQVa1T1ZtVtSD4uz74+llVvavPcq2qmqaqTf3Wf0BV56vqtap6t6q6o3uOCavbr8kiPTGGn285EfF9n29qY2NZtaeuDs3QZMT7uHFmBk/uOBXxATzbOrt5cudpbpmTxdQJ7h26pD/7JhjPiI3y89Gl2Wworaa8uiWi+35y5yl6FD5o1Vej2keKsqm+0M76kis1y4be8/vPUX+xgweX50R0vyNlCcR4ykeXZhMT5ePnW45HbJ+XOrr55RsnuXl2JjnpCRHbr4m8NbMymJQcx692nIrYPlWVx984QX5GAss90njeyxKI8ZT0xFjet3AKv99TScPFjojs86ldp6m/2MFDq/Mjsj/jnCi/j/uun86mIzWUnb8QkX3uPd3I/somHlyegzh4D8pwWAIxnvPJG3Jp6+yJyFViV3cPP3m9gsXZE7g+x6atHQs+tiybhBg/399YHpH9Pb71BImxUbx/0dSI7C+ULIEYz5k1cTwrC9J5fOsJOrrC29j5/IFzVDZc4qEbrfQxVkxIiOGBZTk8t/9s2NvaKmpa+OP+c3zo+mkkxkaFdV/hYAnEeNInb8il+kI7f3gzfDcWqio/eq2CgsxEbp6dGbb9GPf51Mpc4qL8/DDMpZDvvHqUGL/PsxcolkCMJ62emcGCaSl8+5UjXOoIzyB4rx2poeRcM2tX5dmw7WNMemIsHymazjP7znIiTJNNlZxr5o/7zvKJFTlkjI8Nyz7CzRKI8SQR4St3zaGquZ2fba4I+fa7unv4xgulTEkZxz0L3T+stgm9tavyiPIJPywOTynkWy8fYXxcFH+xypulD7AEYjxsSW4qt83N4j+Lj9HUHtrhTX614xSl5y/wlXfNISbKviZjUWZSHPcvmc7Te85wtCq0PbLePNXAqyVVrF2ZR3J8dEi3HUn2zTCe9sU7Z9PW1cMz5aHr0lt/sYNvvXyE5flp3DnP/XMymPB5+KYZJMZF8aWnD4RsDDZV5ZsvlZGaEMMnbsgNyTadYgnEeFp+RiIfXjKd4souyqtDc5X4zZfKaGnv4qt3X+O5fvkmtNITY/nKXXPYdbKBX+8MTbfxJ3eeZuuxOv7mlgJP9rzqyxKI8bzP3lJAnB/+91P7aO8aWYP6gcomntx5igeX5TAza3yIIjRedu/iqSzPT+Mb60qpam4b0bZO1bXyT88dZsWMND5SlB2iCJ1jCcR4XnpiLH8+P5b9lU18fV3psLfT3NbJX//mTdISYvnrWwtCGKHxMhHhX943n47uHr767KFhb6e7R/nb3+7F7xO+ee+CUdGzzxKIGRUWZ0XxyRW5/GLrCV48OPTBmbt7lL/61ZucrGvl+x++jqQ47zZsmtDLSU/gf91cwAsHz/PT14fX6+9nmyvYeaKBf7j7GianDDw1s9dYAjGjxiN3zmbB1GQ+/7v9Q+67//V1Jbx2pIZ/vGceS/O8NaCdiYyHbsznrvkT+efnS/j97qHdwPrsvrP864tl3HHNRN533ejpFm4JxIwaMVE+vv/hRfhEuPdHb/DmqYarrqOq/GLLcX66+TgPLsvmw0XemczHRJbfJ3znQwtZMSONL/x+P68errr6SgQG4/zsk29SmD2Bf//gglHVMcORBCIiHxCRQyLSIyKFV1juDhEpE5FyEXmkz+upIvKKiBwN/p4QmciN201Ljee3Dy1jXIyPDz26jWf2nrnsso2tHXzmV3v46h8Ps2ZWBn/37rkRjNR4UWyUnx8/UMi8yUl85ld7+MmmisuOx9bTozy2+Thf+N1+bpiRzi8+scTzva76c6oEchB4P7DpcguIiB/4AXAnMBe4X0R6v+GPAOtVtQBYH3xuDAAzs8bzzGduYOHUFD775F4+/cRunt9/jovtXXT3KOXVLfx212nu+O7rvHyoii/eMZufPni9zTRoBiUxNoqff2IJK2ak87V1Jdzx3U28eriK+osddHX30NbZza+2n+KWb7/GPz53mFvmZPHTBwsZF+N3OvSQcyQdqmoJcLWi3BKgXFUrgss+CdwDHA7+Xh1c7nGgGPhieKI1XpSaEMN/f6qIb71cxu92V7LuwHlio3z4fUJrcOysvIwE/vCxFcyfmuxwtMZrUhNieOzj17OxrJp/+uNhPvXLXW+9F+UTunqU+VOS+Y/7r+Nd8yfhHwU9rgYiqqEdAmJIOxcpBj6nqrsGeO9e4A5V/VTw+QNAkao+LCKNqprSZ9kGVR2wGktE1gJrAbKyshY/+eSTIT+OlpYWEhMTQ77dSPF6/HDlY+hR5UhDD29WddEDZCf5yE7yMzlBXPPFHu2fgRcMN/6uHmVPdTdNbcrFLqW9G65N9zM71Rfx9o5wfQZr1qzZrarvaG4IWwlERF4FBhoH4iuq+sxgNjHAa0POdqr6KPAoQGFhoa5evXqom7iq4uJiwrHdSPF6/HD1Y7gpcqEMy1j4DNxuJPHfEtpQhi3Sn0HYEoiqjvRvWglM6/N8KnA2+LhKRCap6jkRmQRUj3BfxhhjhsjNrYY7gQIRyRWRGOA+4Nnge88CDwYfPwgMpkRjjDEmhJzqxvs+EakElgHPi8hLwdcni8g6AFXtAh4GXgJKgKdUtXccgW8At4rIUeDW4HNjjDER5FQvrD8Afxjg9bPAXX2erwPWDbBcHXBzOGM0xhhzZW6uwjLGGONilkCMMcYMiyUQY4wxw2IJxBhjzLA4eid6pIlIDXAyDJtOB2rDsN1I8Xr84P1j8Hr84P1j8Hr8EL5jyFbVjP4vjqkEEi4ismug2/y9wuvxg/ePwevxg/ePwevxQ+SPwaqwjDHGDIslEGOMMcNiCSQ0HnU6gBHyevzg/WPwevzg/WPwevwQ4WOwNhBjjDHDYiUQY4wxw2IJxBhjzLBYAgkhEfkrESkTkUMi8m9OxzMcIvI5EVERSXc6lqESkW+KSKmI7BeRP4hIitMxDYaI3BE8b8pF5BGn4xkKEZkmIhtFpCR43n/W6ZiGQ0T8IvKmiDzndCzDISIpIvK74PlfIiLLIrFfSyAhIiJrCMzVfq2qXgP8u8MhDZmITCMwPP4pp2MZpleAeap6LXAE+JLD8VyViPiBHwB3AnOB+0VkrrNRDUkX8LeqOgdYCnzGY/H3+iyBaSO86nvAi6o6G1hAhI7FEkjo/CXwDVVtB1BVL86S+B3gCwxj6mA3UNWXg/PIAGwjMIul2y0BylW1QlU7gCcJXIh4gqqeU9U9wccXCPzjmuJsVEMjIlOBdwE/dTqW4RCRJGAV8DMAVe1Q1cZI7NsSSOjMBFaKyHYReU1Ernc6oKEQkbuBM6q6z+lYQuSTwAtOBzEIU4DTfZ5X4rF/wL1EJAe4DtjucChD9V0CF049DscxXHlADfDzYDXcT0UkIRI7dmRCKa8SkVeBiQO89RUCf8sJBIrx1wNPiUieuqif9FXi/zJwW2QjGrorHYOqPhNc5isEqlaeiGRswyQDvOaac2awRCQR+D3w16ra7HQ8gyUi7waqVXW3iKx2OJzhigIWAX+lqttF5HvAI8DfRWLHZpBU9ZbLvScifwk8HUwYO0Skh8DAZjWRiu9qLhe/iMwHcoF9IgKBqp89IrJEVc9HMMSrutJnACAiDwLvBm52U/K+gkpgWp/nU4GzDsUyLCISTSB5PKGqTzsdzxCtAO4WkbuAOCBJRP5bVT/qcFxDUQlUqmpvye93BBJI2FkVVuj8D3ATgIjMBGLwyMieqnpAVTNVNUdVcwickIvcljyuRkTuAL4I3K2qrU7HM0g7gQIRyRWRGOA+4FmHYxo0CVxx/AwoUdVvOx3PUKnql1R1avC8vw/Y4LHkQfB7elpEZgVfuhk4HIl9WwkkdB4DHhORg0AH8KBHroBHk+8DscArwZLUNlV9yNmQrkxVu0TkYeAlwA88pqqHHA5rKFYADwAHRGRv8LUvq+o650Iak/4KeCJ4EVIBfCISO7WhTIwxxgyLVWEZY4wZFksgxhhjhsUSiDHGmGGxBGKMMWZYLIEYY4wZFksgxhhjhsUSiDHGmGGxBGKMg0Tk+uD8JXEikhCcU2Oe03EZMxh2I6ExDhORfyYwDtM4AmMafd3hkIwZFEsgxjgsOPzETqANWK6q3Q6HZMygWBWWMc5LBRKB8QRKIsZ4gpVAjHGYiDxLYCbCXGCSqj7scEjGDIqNxmuMg0TkY0CXqv4qOD/6VhG5SVU3OB2bMVdjJRBjjDHDYm0gxhhjhsUSiDHGmGGxBGKMMWZYLIEYY4wZFksgxhhjhsUSiDHGmGGxBGKMMWZY/h+yB+3CnRpw6wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# generujemy wartości x...\n", + "\n", + "PI = np.pi\n", + "\n", + "x = np.linspace(-2*PI,2*PI,100)\n", + "\n", + "# generujemy wartości funkcji\n", + "y = np.sin(x)\n", + "\n", + "# rysujemy wykres\n", + "plt.figure()\n", + "plt.plot(x, y)\n", + "\n", + "plt.xlabel('x')\n", + "plt.ylabel('sin(x)')\n", + "# powtarzamy dla pozostałych funkcji\n", + "plt.grid()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABQk0lEQVR4nO29d5hkZ3Xg/TvVqTpXh+meTtMTNKM0mqAZlBBiBAgLDBY4Lawt+Nb2arHR2stiW+KzzWd7lzVrdteRNcg2BmyMDJggS0J5RkKgMFETNTl0ms5VnSp0VZ3vj6rb09NT3V3hVt1bmvf3PPV01b3vvfd0hXveE19RVQwGg8FgyBSP0wIYDAaDoTgxCsRgMBgMWWEUiMFgMBiywigQg8FgMGSFUSAGg8FgyIpSpwUoJM3Nzbp69eqsjp2enqa6utpegWzCyJY5bpULjGzZ4lbZ3CoXpC/b3r17R1R1xRU7VPWqeWzbtk2zZefOnVkfm2+MbJnjVrlUjWzZ4lbZ3CqXavqyAXs0xT3VuLAMBoPBkBVGgRgMBoMhK4wCMRgMBkNWGAViMBgMhqwwCsRgMBgMWeGoAhGRr4jIkIgcXmS/iMhfisgpETkoIjfP23eviBxP7nu4cFIbDAaDAZy3QL4K3LvE/vcB65OPB4C/ARCREuCLyf03AB8VkRvyKqnBYDAYLsNRBaKqLwFjSwy5D/h6MhX5VcAnIm3ALcApVT2jqhHg0eRYw1uAoYkQ/7q3l3jcLDXwVmR0Ksy39/QQjcWdFsWQI6IOrwciIquBx1V1Y4p9jwOfV9WXk6+fBx4CVgP3quqvJbffD9yqqg+mOMcDJKwXWltbtz366KNZyTk1NUVNTU1Wx+abt5Jsp8Zj/NWBMIGw8tvbvWxsLnGFXIXkrS7bPx0N89yFKNc3eviNLV5qy8U1suUDt8oF6ct2991371XV7Qu3u72VSapvli6x/cqNqo8AjwBs375dd+zYkZUgu3btIttj881bRbZHX7/A/3z2MG31lUTiYS6WtvDgjpscl6vQvJVlU1U+88oLrGmu4LQ/yOf3KY987GZubK93XLZ84Va5IHfZnI6BLEcv0DXvdSfQv8R2Q5HyxMEBHv7uIW5b28RjD76dd25YwTNHBo0b6y3Gwd4AA4EQn7z7Gr79n24nrsovfOkVRqfCTotmyAK3K5DHgI8ls7FuAwKqOgDsBtaLyBoRKQc+khxrKFJePDFEY3U5X/0Pt+CrKufejSsZmgxzoNfvtGgGG3n6yEVKPMJ7rm9hc5ePv/zoVmYiMfacH3daNEMWOJ3G+03gFeBaEekVkV8VkU+IyCeSQ54EzgCngL8FfgNAVaPAg8DTwDHgW6p6pOD/gME29l/ws7XLR4kn4Z28+7oWSj3C00cuOiyZwU6ePnKR29Y24qsqB+CmjnrKSoT9F/zOCmbICkdjIKr60WX2K/DJRfY9SULBGIqcQHCWk0NT/Mzm9rlt9ZVl3L6uiacPX+The69DxJ5Aq8E5Tg1Ncnp4mo/fsXpum7eshBva6th/wVggxYjbXViGq4CDSTfV1lUNl22/d+NKzo3OcGJwygGpDHbz9JFBAN57w8rLtm9d1cChvoBJ6y1CjAIxOM6BC35EYFPX5Zk499zQigjGjfUW4ekjF9nS5WNlvfey7VtX+ZiJxMxEoQgxCsTgOPt7/FyzooY6b9ll21tqvdy8qsEokLcAff4gB3sD/NSNK6/Yt6XLB8D+HuPGKjaMAjE4iqqy/8I4W1f5Uu6/98aVHOmfoHd8prCCGWzluaMJ99VP3dh6xb5VjVU0VpdzwATSiw6jQAyOcmFshvGZ2SviHxa3rW0C4HBfoJBiGWzmYG+AltoK1q64supZRNja5WN/j7/wghlywigQg6NY6ZuLWSBrV1QDcHp4ukASGfLBmZEprmlZvGXG1lU+Tg1NEQjOFlAqQ64YBWJwlP0XxqkuL2F9S23K/dUVpays83J62ARYixVV5fTQ1NxkIBVbuhIW6EFTOFpUGAVicJT9PX42dV4qIEzFupZqY4EUMSNTESZCUdalcF9ZbOqqRwRTUFhkGAVicIzQbIyj/ROLuq8s1q2o4czwFE53jjZkx5mk9biUAqnzlrG+pcYUFBYZRoEYHONIf4BoXBcNoFusba5mMhRl2DTcK0os63EpFxbA1q4GDvT4zUShiDAKxOAYlrvCqgNYjHXJ4OvpIePGKkbODE/hLfPQXl+55Lgtq3yMz8xyftSkbBcLRoEYHOP08DRN1eWsqK1YcpyV+nlmxATSi5HTw1Osaa7Bs0ScC+DalYlECvM5Fw9GgRgco2dshq7GqmXHtdV5qSwrMRZIkXJmZJp1y7ivIFFQCHDBWCBFg1EgBse4MDYzd9NYCo9HWNNcbWamRUhoNkbP2EzKAsKFNFWXU1VewoWxYAEkM9iBUSAGR5iNxenzB9NSIJCIg5hakOLj/OgMcSUtC0REWNVYxYUxY2kWC04vKHWviBwXkVMi8nCK/b8jIgeSj8MiEhORxuS+cyJyKLlvT+GlN+TCgD9ELK6sakpTgayopnc8SGg2lmfJDHaSTgrvfBIKxLiwigXHFIiIlABfBN4H3AB8VERumD9GVb+gqltUdQvwGeBFVR2bN+Tu5P7thZLbYA/WTSJdC2TtihpU4dyomZ0WE5bVuFwKr4WlQEwqb3HgpAVyC3BKVc+oagR4FLhvifEfBb5ZEMkMeed80k2RtgvL6ollAulFxZnhadrrvVSVp7f46aqmKkKzcYYnTc1PMSBOaXoR+XngXlX9teTr+4FbVfXBFGOrgF7gGssCEZGzwDigwJdV9ZFFrvMA8ABAa2vrtkcffTQreaempqipSc8MLzTFKNu3jkd45twsj7y3Ck8ay9WGo8p/em6GD19Txn3XlOdNLjfwVpLtj14JUlUKv/O2pWtALA4OR/k/e8P83q1e1jeU5FW2QuFWuSB92e6+++69KT09qurIA/gF4O/mvb4f+KtFxv474N8WbGtP/m0B3gDuWu6a27Zt02zZuXNn1sfmm2KU7df/aY/e/b9S71uMO/7kef2tb+7LXSgtzvfMDWQiWzwe142ffUo/+/1DaR9zemhSux96XL+zpyevshUSt8qlmr5swB5NcU910oXVC3TNe90J9C8y9iMscF+pan/y7xDwPRIuMUORkG4K73zWrjBNFYuJ4ckwk+FoWim8Fh0NlYhgAulFgpMKZDewXkTWiEg5CSXx2MJBIlIPvBP4wbxt1SJSaz0H3gscLojUhpxRVc6PZq5ATFPF4uJUhhlYABWlJbTVeekxCqQoSC+ylQdUNSoiDwJPAyXAV1T1iIh8Irn/S8mhHwaeUdX5U89W4HuS8J2XAv+sqk8VTnpDLgSCs0yGolkokGqmIzEGJ8KsrPfmSTqDXZxJWovrWtLLwLJY1VTFeaNAigLHFAiAqj4JPLlg25cWvP4q8NUF284Am/MsniFPZJrCa2G5Qk4PTxkFUgScGZ6mqryElXWZfVarGqvYeXw4T1IZ7MRUohsKjtVtNd0iQgtL4fSOm9lpMdAzPkNXQxWSRpbdfFY1VjE8GSYYMUWjbscoEEPBydYCWVnvRQT6/KF8iGWwmX5/kHZf5pbiqqaEy8sE0t2PUSCGgtMzNkNzTUXaxWUWZSUeWmu99PtNs71ioN8fpKMhvfqP+cx15TUKxPUYBWIoOIkMrMxvLADtPqNAioGZSJTxmVnafUaBvJUxCsRQcLKpAbFo91UaBVIE9CfdjB1ZKJCGqjJqKkq5YPqeuR6jQAwFJRKNMxAIzvm5M6XDV0l/IEQ8bmpB3ExfUslnY4FcautuLBC3YxSIoaD0+YPENfMAukW7r5JINM7odMRmyQx20p+DAgHT1r1YMArEUFCyzcCysFwifcaN5Wr6/UE8Aq3LrHe/GKuaqugZDxpL0+UYBWIoKJYC6c6wBsTCmtGaOIi76fMHWVnnpbQku1vMqsYqItE4g5MmZdvNGAViKCg9YzOUl3pYUZPdzLTDKJCiINsUXgvLQrWKTg3uxCgQQ0HpGw/S4avE48msOtmirrKU6vIS48JyOf3+UNbxDzCWZrFgFIihoPQHgrTl0MdKREwqr8uJx5WBQDBHBZL4jgwEjAvLzRgFYigoA/4QbfXZ31jAqgUxNxa3MjwVZjamOSmQqvJS6ivLzETB5RgFYigY0VicoclQVv2R5tPRYCwQN2O5Fzty/Jzb6r3GAnE5RoEYCsbgZJi4krMF0uGrZHQ6Yrq1upRca0AsjKvS/RgFYigYA8mbQVuOM1PLgukPmJuLG7FLgRgLxP04qkBE5F4ROS4ip0Tk4RT7d4hIQEQOJB+fTfdYg/voT94M2nONgdSbDB030zcepNZbSp23LKfztPsqCQRnmYlEbZLMYDeOrUgoIiXAF4F7gF5gt4g8pqpHFwz9kap+IMtjDS7CPgvEKBA30+cPZdVEcSFWtt5AIJTRuuqGwuGkBXILcEpVz6hqBHgUuK8AxxocYiAQoqYi95npynovHrOwlGtJLCRlhwJJnGPAfM6uxck10TuAnnmve4FbU4y7XUTeAPqB31bVIxkci4g8ADwA0Nrayq5du7ISdmpqKutj802xyHbwVIi6srgtsvoqhH1vnmVXWX/OcrmNYpft/Mg0K0tncv4fhmbiAOx8bT/RvuUnHW5939wqF+Qum5MKJFUp8sLOafuAblWdEpH3A98H1qd5bGKj6iPAIwDbt2/XHTt2ZCXsrl27yPbYfFMssv3vQy9zTXs5O3bckvN51xz7CfFSDzt23JazXG6jmGWbDkeZfupptt+4jh07rsnpWuFojN996SnqVq5mx471OcvmFG6VC3KXzUkXVi/QNe91JwkrYw5VnVDVqeTzJ4EyEWlO51iD+xgIBGnPoQp9Pu2+StPOxIUMBKwakNxdWBWlJTTXlM+d0+A+nFQgu4H1IrJGRMqBjwCPzR8gIitFRJLPbyEh72g6xxrcRTgaY2QqknMNiEW7z8uA3yws5TZ6x+1J4bVoq6+cy94zuA/HXFiqGhWRB4GngRLgK6p6REQ+kdz/JeDngV8XkSgQBD6iqgqkPNaRf8SQFheTN4FcM7AsOnyVRGJxRqbDtNTac05D7uSylG0q2uq9nB0xS9u6FSdjIJZb6skF27407/lfA3+d7rEG92LdWHKtAbG41NY9ZBSIi+j3BynxCC1ZLiS1kHZfJT85PWrLuQz2YyrRDQXB8mPbZYFYLpK+ceMfdxP9/iCttRVZLyS1kLZ6L1PhKBOhWVvOZ7AXo0AMBWHApip0C+s8JsDqLvpsqgGxaPOZWhA3YxSIoSD0+4P4qsqoLC+x5Xx1laVUlZeYtu4uYyAQmrvp24GVtWf6nrkTo0AMBWEgkPs6IPMRkWSzPXNjcQvxuHIxELItVRuMBeJ2jAIxFIR+v301IBbtPpPi6SZGpyNEYvGcVpxcSGttBR4xrkq3YhSIoSAkXBv2KpC2eu9cg0aD81xKlLDP0iwt8dBS6zWuSpdiFIgh78xEogSCs7a6sCBRZDY8FSYSjdt6XkN22J2qbdHmM65Kt2IUiCHvzN1YbLZA2n1eVGFwwsxO3YDdqdoW7fWVZmEpl2IUiCHvzN1Y8mCBJM5vbi5uYCAQorzUQ1N1ua3nbav30u8PkmhCYXATRoEY8s5AnlwblkVj3BvuoN8fpK3eS7J9nW20+SoJR+OMz5hiQrdhFIgh71g5/K319rS3sGirv9TOxOA8iVRt+9vKzNWCmIQJ12EUiCHvDPhDNNdUUFFqTxGhRXVFKXXeUmOBuIQBf9B2KxPm1YIYV6XrMArEkHf6A0HbA+gW7b5KY4G4gFhcGZwM2x5AB+OqdDNGgRjyTr8/aFt774WsNNXormBoMkQsrrYnSgA0V1dQXuIxC4i5EKNADHlFVen3h2xtsDeftvrKubVGDM4x1ywzDxaIxyO0+UwxoRsxCsSQV6ZnITgby5sCaa/3MjodITQby8v5DelhZdrlwwKBRAafCaK7D0cViIjcKyLHReSUiDycYv8vicjB5OMnIrJ53r5zInJIRA6IyJ7CSn4lodkYJwcnnRYjLc6NTPPJf95Hz9hM3q81EkxUiXfkKQZiBVjzbYX0jM3w5RdPF52iujCakDvf1fqWGzEfQXRIxLoKtfbLs0cHeeg7B4nG3N/hYDYW582LE47VyDi2IqGIlABfBO4BeoHdIvKYqh6dN+ws8E5VHReR9wGPALfO23+3qo4UTOgUTIRm+adXz/OVl88xMhXmyd98Bze01zkp0rL8xfMneeLgAEf6Anzn1++gucbe9Nr5jIYSX+wOX1Vezj+/3ffq5uq8XAPgvz9xlKePDPLM0UEeuX8bTXl8z+xi97kxHvj6HsZnZmmsLucXtnfl7Vr9/hBV5SXUVebnltLRUMngZIjZWJwymxarSsXLJ0f4jW/sZTam3LVhBT+9qS1v17KDR146wxeePs5NHfX8+o51/NSNKynx2FuHsxROWiC3AKdU9YyqRoBHgfvmD1DVn6jqePLlq0BngWVckr3nx3j7n7zAnz51nOtW1lLqEX5woM9psZZkIBDk397o550bVnBxIsT/8w+vM5nH1d7GggkFkq8srEK0+z4/Os0zRwe585pmDvcF+ND//TGnhtxtbX5/fx+/9Lev4asqZ21zNX//8tm8zlIHAvkpIrToSLatyaelebDXzwP/uId1K2robqrikR+dcXX1u6ry3X29rGmuZjI0y298Yx8//Zc/YiocLZgMTq6J3gH0zHvdy+XWxUJ+FfjhvNcKPCMiCnxZVR9JdZCIPAA8ANDa2squXbuyEnZqauqKY7/0RgiNx/jD272srg8yEfDwndfPcmvlRTx5+iGlK9ti/MvxCLG48oGVU9xcW8Zf7JvgF//yOT693UtpHmYuA5NhyjzCwd0/ycvNJRJL/MB/fOAoTZOn0j4uk/fsG8fCeICf65zm7uZy/mJfkPv+6iX+9K4qqsvs/58ykS0VB4ai/Pm+MNc1enhwk7J/KMrfH47wN999gRuacqvFWUy24z1BKkvJSe6lGB5JuA6f3PUK1zam/h9yed8uTsf53KtBqkqFT1wXZd9QjK8fneFvv/8CGxry857lyoWJGKeHQ3z8hnLe2VXKrp5yvn50kr/+113c1p7erT1n2VTVkQfwC8DfzXt9P/BXi4y9GzgGNM3b1p782wK8Ady13DW3bdum2bJz587LXkeiMd34/z2lv/2tA3Pb/nVvj3Y/9LjuPjua9XXskG0xJoIR3fjZp/ST39g7t+3R189r90OP6xMH+/Mi28//2Q/17i+kJ1+2bP3jZ/Qz3z2Y0THpvmf+mYje8Ac/1E89un9u249PDWv3Q4/r04cHMrqm3bItxu9++w3d9IdPa3g2pqqqwUhUt/23Z/Q//MPreZPtbf/9Wf2dbx9Iuc8OTg1NavdDj+t39/UsOiaX9+1T/7JfN372KT0zPKWqqjPhqG75o6f11762O+tz2iHXUvzJk8d03Wee0NGpsKqqRmNxvfmPn9EH/3mf7bIBezTFPdVJF1YvMN8p2wn0LxwkIpuAvwPuU9VRa7uq9if/DgHfI+ESKxivnx1jMhTlnhta57bdc0MrFaUe/u2NK/4NV/Avu3uYDEd54K61c9t+7uZOaitK+dHJ/ISSRoOatwwsi3yuC/Ivuy8wHYnxK3eumdt286oGyks87D43lpdr5sruc2O8bXUD5aWJn7e3rIRfvq2bF94c4tTQlO3Xi0TjDE+F85aBBZeC8/lI5VVVfnRyhB3XtbAmGUerLC/h/tu6ee7YIGeG7X/PckVV+bc3+rlzfTONyeaVJR7h3de3sOvNoYItceCkAtkNrBeRNSJSDnwEeGz+ABFZBXwXuF9VT8zbXi0itdZz4L3A4YJJTiJTo6LUw53rm+e21XrLeNd1LTxxaMB1GRyzsTj/8ONz3LqmkU2dvrntpSUebl/XxI9ODufF3zsW0rzFPyza8tTuOxqL87WfnOfWNY1s7Kif2+4tK2FTZz27z40vcbQzDE+GOTMyzfbVjZdt/+Xbuikv9fAPPz5r+zUHJ0Ko5i/OBYkbemN1eV6KCY8PTjI8GeYd1zRftv3+21dTVuLh71+2/z3Llf09fvr8QT64qf2y7e+5vpXJcJTXzxZmcuOYAlHVKPAg8DQJ99S3VPWIiHxCRD6RHPZZoAn4vwvSdVuBl0XkDeB14AlVfaqAsvPs0UHesb6ZqvLLfY0f3NzOyFSEV8+4a3b6/LEh+vxB/uM71l6x7x3rm+kdD3J+1N603nA0hj+cfwuk3efNS43A00cG6fMH+bUU79nb1jRyuC/ATKRwAct02Hs+8b172wIF0lxTwYe3dPCv+3oZn47Yek1LeefTAoH8fc4vJ63v+ZNBgBW1Ffzs1g6+s7e3oIHpdHjsQD/lpR7ee2PrZdvfsX4FFaUenj16sSByOFoHoqpPquoGVV2nqp9LbvuSqn4p+fzXVLVBVbckH9uT28+o6ubk40br2ELx5sVJ+vxB3nN96xX73nVdC9XlJa5zY+27ME55qYcd1664Yt+d6xPbfnRy2NZrDgbCAHlrY2LRVl/JRCjKtM0/8mePXmRFbQXvvq7lin23rG4kGlcO9PhtvWauvH52nIpSDzfNs5gsPnJLF6HZOC+fstddOVcDkmdLs8OXn2LCl06OsG5FdcqJzk/duJJwNM7R/gnbr5stsbjyxKEB3nVtC7Xessv2VZaX8I71zTx3bKggGWSmEj0Lnj06iAi8O4UC8ZaV8N4bV/LDwwOEo+4pOjs2MMGG1hpKU+TQr26qorOh0vY4iOVuyLcCyVezvT3nx3nb6gY8KbLTbu5uQAR2n3WXG2v3uTG2dPnm4h/z2dhRT2VZCXvP2ytzf56r0C2sYkI7b4yh2Rivnx3lHeuvnFgBXN+WqOk6NuAeBfLamVGGJ8N8cHN7yv333NBKnz/I0QLIbBRIFjx3bJAtXT5W1KYuJnvfxpVMhKLsv+AvrGBLcGxgkutXpi5wFBHesb6ZV06P2hq7sRRI/oPo9gdYBydC9I4HuXlVQ8r99ZVlXNta66pA+lQ4ypH+ALesaUy5v6zEw+auetsVyEAgSJ23lOqK/FYFdPgqmY7EmAjaZ2nuOz9OaDbOOxa4ryxa6ypoqCrjzYvuUSC7TgxTXurhXSksY4B3XdeKCDx3dCjvshgFkiEXAyEO9gYuy75aiBVwPZmHjJdsGJ4MMzIV5rq2xSvk77xmBZPhKG/0+m27ruVuWJmHRYbmYy1iZKcFsi95k93WnVqBQCLOsO/CuGsSJvZfGCeuXBFAn8/27kaODkzYGrvJZ7PM+VjXsDOQ/tLJEUo9wq1rm1LuFxGuW1nH0QH3FI4evzjJNStqqCxPXZ+yoraCrV0+njs2mHdZjALJkOffTHwo711CgbTVe6mpKHVNbyzL/L6+rXbRMW+/pgkRbHVj9fuD1JUL3jJ7F5JayMp6Lx7B1l5Je84nYgk3tl8ZS7B425pGZiKxgrgK0mH32TE8Ajev8i06Zlt3A7G48kZPwLbr9vmDBVUgdsZBXj41zM2rGqhZwnq6vq2O4xcniMXdUZV+amiK9a01S46554aVHOoL5H2pA6NAMmT32TFa6ypYt2LxD1BEuKalhpOD7rBALAVywxIWiK+qnE0d9XMZKXbQ5w/SVJn/ivyyEg/tvkou2Ngccu/5cTZ3po4lWLxtdcI6KVTK5HLsPjfODe11VwRW57M1qVysbK1cUVV6xmZY1ZifXmfzsWJd/TbdFEenwhzpn1jUfWVxfVstodk450anbbluLkyFo/T5g2xoXXwyCHBnMiXZbnflQowCyZCDvQE2dfqWbcuxvqXGNS6sYwMTtNV78VWVLznuzvXN7O/xM2FTb6x+f5Amb2FauqxqrLJNgYRmYxzpD3DzEu4rSMReOhsq2eOCepBINM7+nnG2dy/uvoLERGF9S41tN5bxmVmmwtGCKBC7F5b68elRVK9M312ImwLpViHoNS1LWyDXrqylvMTDwV77LM1UGAWSAYHgLGdGptncubhbw2JDay0jU2Hbc+6z4c2Lk3M/gqW485oVxOLKazbUsGhyIalCWCBgrwI52BtgNqZsX0aBQCKdd/e5Mceb7h3uDxCajS8aQJ/Ptu4G9l3wE7fBJXM+OSsvhALxeCRZC2JPssRPTo1Q5y29rLA2FetbayjxCG+6IA5iucWXs0DKSz1c317HG3lOMzcKJAMO9yW0+XJfOIBrkj5Kp62QcDTGqaEprlu59BcOYEuXD48kupLmin9mluBsjCZvYb5iXY1VjExFbKkFsWbny1kgkIiDjE5HOGdzEWam7E1aQdtXLy/ztu4GAsFZTtvQosNS2qua8q9AIBEHsSsGcqDHz5ZVDcu2P68oLWHdimrXWCDlpR66GpaPOW3urOdwXyCvsRujQDLAylDalIYFsr7FUiDOzlpODU0RjWtaFkhleQkbWms51Je72Wu5GQppgQD0jOd+I997foy1zdVzPYaWwlLMpx2eKJwenqK5ppyW2uUz3qzMMjvcWNaiZF0NxaVAQrMxTg5NsSlFwWUqrm+rc4UCOTE4ydrm6pT1XAvZ1OljOhLLay8vo0Ay4GBPgO6mqmVjCZDIWa8uL3E8kH4saXano0AgkYJ8qDeQs0vG+pEXMgYCiRX4ckFV2Xt+fMn03fmsbko033M6wHpudJrupvQW1FqTVI52KJALYzOsqK1YNKXUbtp9lQxOJBaWyoWjA4msqo0ZKJD+QAj/jLMu6ZNDU8u6rywsV/sbeYyDGAWSAYf6Amm5r2BeJpbDFsixgQm8ZZ65LqPLsamzntHpSM7NCS0LpLGyMF+x7qQLJdc4yJmRacZnZtNWIL6qMuq8pbb3EcuU86Mzc+/BcogIN69qsE2BdBcg/mHR4fMSt2FhqUvu6PQVCFyakDnBdDhK73hwzruxHGtX1FBdXsIhG2u7FmIUSJpMhJU+fzCtALrF+tZaxy2QNy9OcG1rbdrLXFozslyzN/r9QbxlHmoXzyi1lfrKMmq9pTmv8743jQLC+YgIa5qrHbVAgpEYA4EQa9K0QCDx/50ZmWYsxySPnrFgQQLoFnbVghzsDdBUXT5XhLocVg2VkxXpVsxqfZoWSIlH2NhRbywQN3AmkOhrlapJ3WKsb6lhaDJMYCZ/S8YuhaomWpik6b6CRK1IiUfmZmjZYlUn52uJ04WIiC2ZWPsvjFPnLV2yzmch3U3OKhDrf+7OYE14K9i+LwcrJBKN0x8I0lVQC8SeavTDfQFu6qxP+/vZUuuluabc0TiINRldrohwPps66zk6MJG39UGMAkmTs4E4HiFtnylc+qCdcmMNTYYZm46klYFl4S0rYX1LDQdzVCDnx6bpLFBg1cIOBWLV+aRqoLgYq5uq6BsPFmwRn4VYymt1BplQN7bX4RFySpjo8wdRLUwKr0ViUpKbqzIYiXFicDKjySDAdSvrHHVhnRiapLzEk5HLcFOnj0g0zok8dcVIS4GISIuIfFhEPikivyIit4jIVaV8zk7EuaalJqOGcetbEjdup1J5j861MEnfAoHErOVwX/aBdFXl7PA0azOYEdvBqsYqesaDWdc3hKOJG0smkwRIWCBxhV4bMsCywarF6G5M//2uKk9YWblYmoVO4YXEBKfDV8mZ4ewtvqMDE8Q1M28CJNxYxwcnHet9dmpwirUr0svAsticjNna2eNuPktKIiJ3i8jTwBPA+4A24Abg94FDIvJHIpLZ3akIUVXOBmJpB9AtOnyVVJaV5E37L8fxi4nrLtVEMRU3ddQzNh3J2k0wOBFmOhJj3YrCKpCuxioi0ThDk+Gsjj9+cZLZmGZ8Y1ndnLiBOhVIPzc6Q0NVGfVVmQWcbuqoz8kCmVMgBbRAIBEcPjOS/aTMCirflEE8ExITsUg07ljNz4mhyWUr0BfS1VhJQ1UZB23sfTaf5VTZ+4H/qKpvU9UHVPX3VfW3VfVngM3AfuCebC8uIveKyHEROSUiD6fYLyLyl8n9B0Xk5nSPtZM+f5DJCBkF0CFROXtNS01e1qFOh56xGRqry6mvzPDGklSU2c5OrbzztRnEEezAupGdzzIecbgvYbFlrECSweuzI87EQc6NTLM6C2tvY0c9Q5Nhhiayy2i6MDpNRamHFTWplzXIF2ubqzk7PJ21hXyob4LmmgpW1mXWJdpKk7aj1ihTZiJWBlb67mhIxAZv6vQ5Y4Go6u+o6oVF9kVV9fuq+q/ZXFhESoAvkrBsbgA+KiI3LBj2PmB98vEA8DcZHGsbVkZSphYIJOIgTmVi9YwH6UyjYnUh162spdQjWWdinU7eSNcW2AKZqwXJ0j9+qC9AnbeUrsbM3rPG6nJqK0qzVly5cn50Zk6JZYLlqjvcn93nfGFshq7GqoziRXawbkU105EYgxPZWZqH+vzc1FGXcYKHVf3da2PTznQ5MzyNKmzIIIBusbmznpNDUwQj9i9wl24M5B9FpH7e69Ui8nyO174FOJVcnjYCPArct2DMfcDXNcGrgE9E2tI81jbe6PVTInDdEu3QF2N9Sy0XJ0IEgoXPxOodn8lKgXjLcqtIPzM8RVV5ScYzvFxp91XiEbJO5T3cF2BjR/qZORYiQndzlSOujdBsjP5AMO0akPnc2F6HCBzqzS6z6EKBU3gtLMs2mwrrmUiUU0NTc1Z2JjTXVFBe6qHXxmUD0sVyg2eSgWWxqdNHLK4cyXKisBTpRoRfBl4Tkf8KdAC/A3w6x2t3AD3zXvcCt6YxpiPNYwEQkQdIWC+0traya9eujAUt8Ue5u1155eUfZXxseCjRm+lbT73E+ob8VOtOTU1d8X/FVbkwOsO1NZGs/ufmkjB7z02wc+fOjG+oe46HWOFVXnzxxZSy5ZOGCmH3sbPsKh9YctxCuaJx5Vj/DPesLstK3qpYiDd7J235XzN5z/qn4qjCzNAFdu3qz/haK6uEXQdPs7m0LyPZVJWzQzN0lM0U9PMFGAslgthP/WQ/kd5L7tl03reT4zHiCjKe3fvVWKHsPX6eXVXpL9Zkx2/g+eMRSgTOHd5Db4YW30xYuauzlGOHDjB17nKbIVfZ0lIgqvplETkC7ARGgK2qejHrqyZI9S4sdGouNiadYxMbVR8BHgHYvn277tixIwMRE+wAdu3aRTbHdg1P8ef7XqR59bXs2NqZ8fHpkEq2oYkQ0aef545NG9hx++qMz9nrPc9L3z/MNZtvzTjP/w9ef4EtaxrYsWNr1u9btmw48SrhaIwdO96+5LiFch3uCxB95mXef9tGdiyy1vRS7A6/yb4Xz/D2d9xFWQZZMunIthTPHR2El/fwvju3sXWR5XeX4taL+3n1zFja17NkG5uOEHr6WW7ftIEdd67J+Lq5oKr83o+fpqShnR07brxCtqU4++OzwFH+/b130pqFhbzhzOv4ZyLs2HFn2sfY8Rv4dt8+upsmeM+7sjvPfT+VenuusqXrwrof+ArwMeCrwJMisjnrqyboBbrmve4EFk4JFhuTzrGuYK7wqcBmrxXo68zSxWAFkjN1Y4VmY/SOB9NunWI3iVqQzN9r6//MNIBusbqpmmhcC/45WzUg2b7fGzvquTgRYjjDzDWnMrDgUvV/Nqm8h/oCrKityEp5QCIOkmu3g2zo9QfpyMIdnW/SnSr9HHCnqn5TVT8DfIKEIsmF3cB6EVkjIuXAR4DHFox5DPhYMhvrNiCgqgNpHusKvGUlNNeUF9xval0vnbbPqbiuLbEgTabrCVwYm0GVgqfwWqxqqmJkKpzxmt+H+wLUekuziiUAc1lQha5IPzc6TX1lWVoNPlORbSDdSQUCiQSNbLLeDvT4M86mnE9nQ9XcIlqFpG98Zm4y6ibSUiCq+iFVHZr3+nUWiTmki6pGgQeBp4FjwLdU9YiIfEJEPpEc9iRwBjgF/C3wG0sdm4s8+aTDV2nbKmrpYimQDl92P/CK0hKub69jf4YKZC6Ft7mwKbwWc23dM7RCDvcF2NieeQDdwlI8ha4FSWRgZX8Tv7E9USN0OMOMux7HFUgNveMzhKPpZxYFZmY5MzzNli5f1te1klIKaWmGZmOMTEWKT4GIyO+LSMolzlQ1IiLvEpEPZHtxVX1SVTeo6jpV/Vxy25dU9UvJ56qqn0zuv0lV9yx1rFvpaKgsvAtrbIbmmtzabG/t8nGoN5BR5e3ppFthjVMWSBapvLOxOMcuTmZcWDafFTUVVJWXOGKBpNvGPRW13jLWNldn7Kq8MFrYNu4LWbciUf2ficK2aiG2dGUeK7LompugFG6iYE0+i9GFdQj4NxF5XkS+ICK/KyKfTab1HgI+CLyWfzGLm86GqmTfoMIte9qbZQ3IfLZ0+QjOxjiRQR3LmeFpWusqqMmg5YudZKNATgxOEonG52bj2SAidDdVF9QCiUTj9I0Hc7JAIOHGyrRo9MLYjGPWB1yycDNJ5T3Q40cENnXl4sJK1oIUsJiwb86bUHwK5OdV9e0kXEVHgBJgAvgn4BZV/ZSqDudZxqKnw1dJOBpnZKpwi9H0jM/k3CXVMvUPZODGOjMy5Zj7ChLrc/iqyjhxMf32MYdzDKBbrGmu4lwBq9F7xmeIK1lVoc9nY0disaTRqfQC6arKicFJxxIl4JKFezqDQPqBHj/rVtRQ581+jYGm6nIqy0roKaBHoZgtkG0i0g38Eokg9ZeBr5MIYrvvv3EpdrWgTpdYXOn3526BdDdV0VBVxoGe9Fp+qypnhqcLXoE+HxHhpo76jLoJH+6boKaiNKtq7vl0N1XTMz5TsGZ7c00Uc5R7Y4YZd/2BEKPTkbQXY8oHNRWltNZVpJ2JpaqJNdBziH9A4vvV2VBZcAukxCMFL8xNh+UUyJeAp4DrgD3zHnuTfw1p0FHgwNvQZIjZmOasQESEzV2+tC2QsekIgeBswXtgLWRzp48Tg5Npt27Ye36cTZ31ObfkWN1UxWxMc17NMV3OjczMXTcXbuqoxyOw74I/rfEHk9+HbFr72Mna5vSbKvaMBRmbjuSsQICkAimsBbKyzptRF95CsVwvrL9U1euBr6jq2nmPNaq6tkAyFj1zCsRfmFmLlYHUZcN6HFu6fJwcmmIytHwrljMO9cBayE2d9cTiOtfOfikCM7McuzjBrWuacr7uqsbCpvJeGJuhpqKUxursUngtar1l3Nhez2tnRtMaf7AvQKlHMlpnJh+sXVGd7BG1fGxxf9KKtkOBdDVWFTaIPu7OGhBIP4331/MtyFuZOm9iudVCzVos8zpXCwQSPzhVOJRGmuelFF5nFYi1BsLBNDqQ7j43hircujZlsmFGWO/3gL8wFkifP0iHTas+3rqmkf09fkKzy1ttB3v9XNdWi7fMmQwsizXN1QSCs2kty3ugx4+3zGOL0utsqGQiFC1Yf7ve8Rk6XRhAB7MiYcHo8BUuldeyQOyYtVgztnTqQc4MT1Ne4in4SoQLWVnvpaW2Iq1uwq+dHaW81GPLzLS1zotI4WJd/f4gbT57/OK3rm0iEo0vWzgaV51btdFprGWHz6SRuLD/gp9NHT5b3ECWZV+IOMhsLM7FiVBxWyCG3OlsKFwxYe/4DK11FVSU5j5D9FWVs7a5mv1p+MdPD0/T3VRFSYHbe6diU2d9WhbIa2fH2NLls2U2XZ5cG2MgUJjPeSCQWHfeDm5Z3YhI4v1YiqEZZTIUZVOOGWt2YLlKl0vlDUdjHO2fYMsqny3X7ZxTIPn/nC8GQsTVnSm8YBRIwehsqCqcBTI+Y6sVsCUZSF/K16yqHO4LsMFhv7jFpk4fZ0aml4zdTIZmOdwX4LY1ubuvLNp8lfQXwIUVmo0xNh2hvd4eC6S+qozrVtbx2tml4yBnA4kMMzdYIJ0NVVSVlyxraR4bmCQSi9tiZSaum7iZFyIO4uYUXjAKpGB0+CqZDBfGb9o7Hsy6B1YqtqzyMTIVXtKCOjE4xcWJEO+4ptm26+bCps76ROxmidTUPefHiWvCfWMXHT4v/QWwQPqTn4VdFggk4iB7z48TiS6ehnw2EKOi1JPVwkZ2U+IR7ljXxEsnh5ec3By4YF8AHRK1RjUVhYlpurmIEIwCKRiFSuWNxuIMBEK2WyCwdEHhSycS9aR3bVhh23VzwZohLxX8f+3MGKUeYatNrg2AtvpKBvyhvHcdsFKF2+rtVSCh2TiH+vyLjjk3kajYd0tK6Ts3rKBnLLjkYl4Hevy01FbQZpO1dqkWpAAKJA8TBTtxx7fgKqBQxYQDgRCxuGa8LOtSXLeyjpqKUnYdX7zpwIsnhtnQWuOaL3pjdTmdDZVLujdeOzvKps56qsrta7vS7qskOBvDP5NfS3POtWHj+31L0pX36pnUcZBoLM65ibgr3FcW79zQAsCLx4dS7o/G4rx8apS3rW60JVvNorOhqiBB9L7xIM01FY5nvC2GUSAFoqNAPXSsWZGdFkh5qYd7N67kqcMXU6Z5zkSivH52jHe6xPqw2Nzpm2ugt5BwVDnUG7DVfQXMxSTy7cayUoVb6ytsO2dTTQXrW2oWDaSfGp4iEoPNOfSSsptVTVWsaa7mxROpJzc/Pj3KyFSYD2axSNhSWBZIvi3NXv+Ma+MfYBRIwWiqLsdb5sm7C6vHxhqQ+Xx4awdT4SjPHbtyKc/XzowRicVd476yuKmznt7xYMo6gVP+ONG4cquNAXRIBNGBvAfSBwKJmakdmXbzuXVtI3vPjaVsx2JZczd1+Gy9Zq7ctb6ZV86MEoldeTP//v4+6ryl3H2dvd/NzoZKpsLR/FuaNjRFzSdGgRQIEaG9AOuC9I4HEbHXNw5w29omWusq+P7+K9fOfvHEMN4yD29bbe/NOFesXk2p0nnfHI9R4hG22yxze7IuI9+pvIkiQvt7I926ponpSIwj/VdW8R/s9VNZ6nyh6ELeee0KQrNxToxfrvSmw1GeOnyRn97UbruinWvrnkePQjyu9PtDri0iBIcUiIg0isizInIy+feKBv0i0iUiO0XkmIgcEZHfmrfvD0WkT0QOJB/vL+x/kB1WW/d80u8P0lrrpbzU3o+2xCPct6WDXceHr5jRv3himNvXNrnOT2t1110Y/I/G4uwbjLKxo972tvPN1RWUlUhBYl12TxLgUkX+k4cGrth3oMfP6jpPzj3D7Oa2tU2Ul3g4PHL5KoHPHh0kOBvjw1s7bL9mRwEszZGpMJFY3LiwUvAw8LyqrgeeT75eSBT4dLIX123AJ0Xkhnn7/0xVtyQfT+Zf5NwpRDX6QMC+6uSFfGhLB9G48sS8m8uF0RnOjky7Lv4BiR5Pt6xp5Gs/OcfIvFbl//z6BfqmlP90l/3t3DwemcvEyheqiW7L+UhYaKn18rNbO/iHH5+7rDX9M0cucrhvgk0rnFnnZSmqyku5ZU0jh0Yuj899b38fHb5Ktndnv4DUYlgZXfm0NHvzkChhN04pkPuAryWffw340MIBqjqgqvuSzydJLF1r/1SigHQ2VDI6HUm7S2w2DARCtOdhZgpwfVst17bWXubGevGku9J3F/K5D21kOhzjDx9LrHg8Nh3hfz9zgusbPbxv48q8XLOt3jtXp5EPJoJRZiKxOXeZ3Tz8vusoL/Xwx48fBSAQnOX3v3+Y69vquKfbfQoE4K4NzfRN6dz7PjwZ5kcnh/nQ1va8WEyN1eWUl3q4mMfOy3M1IMYCuYJWVR2AhKIAWpYaLCKrga1cvvrhgyJyUES+ksoF5kbyncqrqgz4Q6y0Kd99ISLCh7Z2sPf8OAd6/Lx8coTv7uulq7HS0cWFlmJ9ay2/+e5rePzgAM8cucgXnj7OVDjKL19fYWta53w6fJV5beme79qAljovv/nua3jhzSFeeHOQzz1xlNHpCF/4+U2Uusx9ZWGl8375xdMc6PHznb29xDVhNecDEUlMFArwObvZApF8paGJyHNAqine7wFfU1XfvLHjqppSCYhIDfAi8DlV/W5yWyswAijw34A2Vf2VRY5/AHgAoLW1ddujjz6a1f8zNTVFTU1u1bcnxmP8j9dCfHpbBTfZ6AqwZJuKKA++MMNHryvnp1Znv+raUowG43z6xcsV4AfXlfFz61O3FLfjfcuVaFz541dCjIXiTM/CPd2l/EzXbN7k+s6JCE+eneXv3luFJwsltdx7dmAoyp/vC/MHt3lZ58tP3CkaV37/x0GmZ5XJCHxgbRk/v6HcFZ9nKlSVP3h5mt7pS+93d52HP7ojfzffz78eJBaH37tt6Wtk+559/WiYV/uj/N/35G9ylq5sd999915V3X7FDlUt+AM4TuKmD9AGHF9kXBmJ5XT/6xLnWg0cTue627Zt02zZuXNn1sda9I3PaPdDj+s3Xj2f87nmY8l2pC+g3Q89rk8c7Lf1/Av5l90X9G9fOq0vnxzW0alwWrI5zaFev679zBO67b89o4FgJK9y/dOr57T7oce13z+T1fHLyfb1VxLnHwwEszp/urx4fEi7H3pc3/W/dmowEk1LNid5/oUX9PzItP7w0ID+xXMndO/5sbxe71OP7tc7/uT5Zcdl+579h394Xe/985eyOjZd0pUN2KMp7qlOOTQfAz4OfD759wcLB0jCv/D3wDFV/T8L9rVp0gUGfBg4nF9x7aGltgKPwMU8Bd4uTiTOa1fLhsX4xe1deT1/PtjYUc8j92+juaYipzWx08GKQfX785Mp1e8PUlYiNNfYV0SYirs2rODP/t1mtnQ1uC7DLhUeEVY1VbGqqYp78xTfmk+bz8vgRKLzQz46UCfime5bxnY+TsVAPg/cIyIngXuSrxGRdhGxMqreDtwPvCtFuu6fisghETkI3A18qsDyZ0VpiYeW2vz5Ta2UwnzctN4KvPv6Vjbb1FBvKawsuHwF0gf8QVrrvAVJp/3w1k7XxrecZmV9JdG4XpbhZycDgWDe4pl24YgFoqqjwLtTbO8H3p98/jKQ8heiqvfnVcA80ubz5i31byAQpNQjrKjN78zUsDRWcDtfn3O/3751QAzZM9e2JqnQ7SQYSfRTc/vnbCrRC0x7HmsEBvwhWuu8rljQ6Wqmzpto952vIrP+QND1ro2rAcvSz0fGndVLLd/u6FwxCqTAtNV7GQjkp933QCB/KbyGzGj35acWJBZXBieMBeIGLhUT2q9ALuahXX8+MAqkwKys9xKcjeVlYamBQND1M5arhbb6yrx05B2ZCjMb07mmjQbn8FWV4S3zMJCHiYI1+XD779kokALTnqceOqpq6xrZhtxo9+XHVdk/V1zm7hvL1YCIJFzSebBArHO63aNgFEiByVcPnbHpCOFo3PUzlquF9novo9ORlOun5ILJtHMXbXlawnggEEwuAeHu9GmjQArMpQwde2ctl5Y4NQrEDbTl7XNOtjExCsQVrKyrzEs/rIFAKG9NUe3EKJAC01xTQalHbLdA8rFGtiF75tYFsdk/3u8PUV1eQl2lO5saXm20J4sJUy3AlQsD/hAr69z/WzYKpMCUeITWOq/t/nFLIRXDrOVqwLIQ7G6c2e8P0uarzFsjSENmtNVXElcYmrS3mLA/EMxbt2U7MQrEARJdPO23QMpKhOZqU0ToBlbmKcVzIJCfdUAM2dHms/9zngpHmQxFi8KbYBSIA7T57PebFrK9hWF5vGUlNNeU214L0ud3f3+kq4l8JMVYvfKMBWJIST6KCfvzuJCUITvafZW29j0LR2OMTIWNBeIi5qrRbXRJW5l2K21uj5IPjAJxgLZ6L+Fo/Iq1xXMhn0vZGrLD7pUJL5pMO9dR5y2lurzEVpf0XKZdEUwUjAJxALt76MRVGQyEi8JnejWRKCYM2mZpWjPTYrixXC2IiO0uaeu+YHeDxnxgFIgD2N1DZzICkZgpInQb7fWVTEdiTISitpyvP89L2Rqyw+6lbQf8IZprKigvdf/t2f0SvgW5lLlhj9k7FkrkoBsF4i7sXhdkoEg6tF5ttNV7ba33KZYUXjAKxBGaqysoKxHb+mGNhRIuEjMzdRd2rwvSHwgVRXuLq422+kqGp8JEovYUEw4EQkUzSXBEgYhIo4g8KyInk38bFhl3Lrny4AER2ZPp8W7F4xFW1nttW9rWUiDF8qW7WrhUTGjPRCFRRGg+Y7fR7vOiCkOT9nzOFwP5WQo5HzhlgTwMPK+q64Hnk68X425V3aKq27M83pW01dmX4jkWUspLPTRWl9tyPoM9rKhNtq2xy4WVpzXWDbmx0sakmInQLFPhaNFMBp1SIPcBX0s+/xrwoQIf7zh2Lm07GkwE0E17C3cx17bGpolCvz9Ih3FTuo4OG2NdVj1Jsaz34lRHtlZVHQBQ1QERaVlknALPiIgCX1bVRzI8HhF5AHgAoLW1lV27dmUl8NTUVNbHpmI2EKF/fJYXdu7Ek+ONf2g6SnW52iqfXdj9vtlFoeSqljBHzw2wa5c/7WNSyTYzq0yGo8yM9rFr17C9QmaAWz9PcE62cDThQv7R3iPU+09esT8TuQ4OJzL2Bs8cY9f4CdtkXIyc3zNVzcsDeA44nOJxH+BfMHZ8kXO0J/+2AG8AdyVfp3X8wse2bds0W3bu3Jn1san42k/OavdDj+vQRCjnc23+7BP6O98+YINU9mP3+2YXhZLrN7+5T+/8n89ndEwq2d4cmNDuhx7Xxw702SRZdrj181R1Vratf/yMfua7B1Puy0Suf37tvHY/9Lj2js/YJNnSpCsbsEdT3FPzZoGo6nsW2ycigyLSpgnroQ0YWuQc/cm/QyLyPeAW4CUgrePdjNWmYCAQZEVt9g0Qw9EY/rDS4auySzSDjbT7Knny0ADxuObUp6y/iPojXY10+CrpG7fDhRVEBFpyuCcUEqdiII8BH08+/zjwg4UDRKRaRGqt58B7SVgwaR3vduxa2tbymXY0FIfP9Gqjvd7LbEwZmcqt3bcpInQ3Hb5Kesdncj5PfyBES20FZSXFUWHhlJSfB+4RkZPAPcnXiEi7iDyZHNMKvCwibwCvA0+o6lNLHV9M2NXFs3fcWiPb3FjcyNxEIcdA+oA/RIlHaKk1Fogb6WiopM+GtjUDgWBRZdo5EkRX1VHg3Sm29wPvTz4/A2zO5PhiorG6nMqykjkFkC19/sSsp9NYIK7Euhn0+4Ns6fJlfZ7+QJDW2gpKTLt+V9LZUEloNtEgtakme/dT73iQmzrqbZQsvxSHnfQWRETobMjd7O0bDyJcWsDI4C46fJcUSC70+81CUm7G+pxzWYEyFlf6/UE6G4onnmkUiIN0NVbRM5ajC8sfpMErReMzvdqoqyylqrwk91hXIFQ0tQFXI1YMMpdA+uBEiNmY0tVYPJ+zues4SGdDJT02WCDNlcat4VZEJLmAWPY3lnhcGfCHTAaWi+lMZkHm4pLuGbPc0cYCMaRBV0MVk6EogeBs1ufo8wdp8hoF4mZyXZlwdDpCJBY3K066mLrKUmoqSnNyYVnKp6uI4plGgTiIFfi2Zh6ZEo3FGQiEaKo0H6Obaa+vzCkGYlJ43c+lmGYOFkjSG1FMn7O58zhIV2NuZu/gZJhYXI0Ly+W0+yoZngwTjsayOt6sA1IcdPgqc7ZAWusqiqpdv1EgDmJZINlmYlkBO+PCcjdWC/bBQHbFhH1mKduioKOhkr4cYpo9YzNFFf8Ao0Acpb6yjNqK0qwtEKsGpNm4sFzNXCpvloH0AX8Qb5mHhqoyO8Uy2EyHr5KJUJSJUHYxzd7xYFHFP8AoEEcRETobq7KOgcxZIMaF5Wos11O2cZD+QJD2+krTrt/l5JLKOxuLMxAIzrm1iwWjQBwml8Bbnz9Ic0055SXmxuJm2n2ViJB1zU/PWND0OisCLPdTNgrkYiBEXIuvo4RRIA7T1VBFz/hMVj10esfNAkPFgLeshPb6Ss6NTmd8rKpybmSaNc3VeZDMYCe5VKNbXoguEwMxZEJnQyUzkRjjM5n7TfvGzcy0WFjdXMXZkcwVyOh0hMlwlNVNRoG4neaacipKPVkpEMsLYYLohoywfJ6ZxkFUlT6zxGnR0N1UzfksLBDrGGOBuB8Rybqte8/4DB65lLFXLBgF4jBzxYQZfulGpiKEo/Gim7FcraxpqmZ8ZpZAhpbm2ZHE96K7yXzOxUAilTc7F1ZbfWXR9bQrLmnfglyqBcnsS2eZycYCKQ5WJy2IsxlaIedHpynxSNFl51ytdDZkV0zYOx4sugA6GAXiOLXeMnxVZRm7sKxZjomBFAerkxZEpm6ssyPTdDYU38z0aqXDV8nIVITQbGZdB3rGi6+IEBxSICLSKCLPisjJ5N+GFGOuFZED8x4TIvJfkvv+UET65u17f8H/CRvpaqjK2AKx/KxGgRQHXY1ViJBxIP3c6DTdJoBeNHRk4VEIR2MMToSLqo27hVPTmoeB51V1PfB88vVlqOpxVd2iqluAbcAM8L15Q/7M2q+qTy48vpjoasy8rXufP0itt5Q6r6lOLgbmUnkzUCCqyvmRGdaY+EfR0JFs656JG6tvrgtv8X3OTimQ+4CvJZ9/DfjQMuPfDZxW1fP5FMopOhuq6BvPbD3lYuybc7WzurmKc6PpTxSsFF5jgRQPVhzjQgYu6UspvMVngTiyJjrQqqoDAKo6ICIty4z/CPDNBdseFJGPAXuAT6vqeKoDReQB4AGA1tZWdu3alZXAU1NTWR+7HMGRWcLROD94eic+b3o6/eD5GdY3eNi1a1deZcsVt8rmhFzl4TAHLkaXva4l28nxhB99cuA0u3a5Y+7k1s8T3CGbquItgV373qQrdDYtuXZeSGTm9R5/g+CFws7pc37PVDUvD+A54HCKx32Af8HY8SXOUw6MkFA61rZWoISEBfU54CvpyLRt2zbNlp07d2Z97HK8cGxQux96XPecG0tr/GRoVrsfelz/6vkTeZctV9wqmxNyPfLiae1+6HEdnw4vOc6S7dt7erT7ocf1zPBUAaRLD7d+nqruke2+v35ZP/LlV+ZeLyfX5394TK/5f5/QaCyeZ8muJN33DNijKe6pebNAVPU9i+0TkUERadOE9dEGDC1xqvcB+1R1cN65556LyN8Cj9shs1NYwbPe8Rm2dV+RT3AFJwcnAdjQWptXuQz2YqXynhudYUtV+bLjz40kUniL0bVxNXNtay3PHRtcfmCSnrEZ2n2VlHiKr6edUzGQx4CPJ59/HPjBEmM/ygL3VVLpWHyYhGVTtFiBtwtp+sdPDk4BRoEUG2uaE59zuoH0c6MmhbcYWd9aw+h0hJGp9NZ/6SnSGhBwToF8HrhHRE4C9yRfIyLtIjKXUSUiVcn9311w/J+KyCEROQjcDXyqMGLnh8ryEjobKjmetCyW4/jgJN4yjykuKzI6GzJL5T03Om16YBUh1sTuRBq/51hcOTk4yfqW4pwMOhJEV9VREplVC7f3A++f93oGaEox7v68CugAN7bXcbR/Iq2xJwYnuaalpihN3qsZK5U3nWJCVeXcyAzbVi3v0jS4i2tXJpTBycEp7ljXvOTYc6PTzERi3NBeVwjRbMfYxi7hhrZ6zo5OMx2OLjv2xOCkcV8VKaubqzibhqtydDrCVDg6FzcxFA8ttRXUeUvTskCsSeMNbUaBGHLgxvY6VOHNi0tbIYGZWQYnwkaBFCmrm6rTioFYY4wCKT5EhGtX1qalQI70T1BWIkX7ezYKxCVYJuxybqwTQ4kv5bVF+oW72lnTXE0gOIt/JrLkOKvg0MRAipP1rbWcGJxatjj46MAE61tqKS8tzltxcUr9FqSt3ktDVRlHllMgyVnN+taaQohlsBmrqny5QLpJ4S1urm2tJRCcZWhy8UwsVeVof6Bo4x9gFIhrEBFubK9fXoFcnKS6vMS0cS9S5lJ5lwmknx2dpsuk8BYt1gRvKTfW0GSYkakINxoFYrCDG9rrOD44yWwsvuiYE4NTrG+tRcRkYBUjXY1VlHiEE8lansU4OThpViEsYqyYxvGLiysQy119Y3t9QWTKB0aBuIgb2+uIROOcHl785nJicNLEP4qYitISNnfW8+qZ0UXHTISVE4NTvG1NYwElM9hJc00FTdXlc0W/qTjSHwDg+rbi/T0bBeIiLFP2SF9qN9bIVJjR6YiJfxQ5d6xr5mBvgMlQ6uVt3xyLzY0zFC/rW2vmkl5ScaR/gu6mKmqLeEkGo0BcxJrmGrxlHo4OpFYglj/VKlQyFCe3r2siFld2nxtLuf/oWIyailI2FrFv3JAIpJ9cIhPr6MBEUcc/wCgQV1HiEa5bWTdn2i7E9MB6a7Ctu4HyEg+vnE7txjo2GuPWNY2UmgB6UbO+tZapcJSx0JUKZCI0y/nRmaKOf4BRIK7DammSatZyfHCS+soyWmorHJDMYBfeshJu7vbxkxQKZCAQZHBGuX3dFR18DEWG5SnonboyKebNgYQ3oVgr0C2MAnEZN7TXMRGKXrGmsqqy/4Kfa00G1luCO9Y1c3RggvHpywsKLavExD+Knw3JBomn/VcqEMvLYFxYBluxTNqF9SAHevwcG5jgA5vbUh1mKDLuWNeEKrx29nIr5CenR6kpg+tMnKvoqa8q464NK3ipN3pFav6R/gmaaypoqfM6JJ09GAXiMq5trcUjcLDXf9n2f3zlPDUVpfzszZ3OCGawlU2dPqrKSy5zY6kqr5we5brGEjym0/Jbgo/f3o0/rDx79NICU6rKwV5/UVegWxgF4jIqy0u4a8MK/vGV8wxNhAAYnQrz+MEBfvbmDmoqnFrG3mAn5aUetq9uvCyQfmFshj5/kOubShyUzGAnO65toblS+Por5+a2PX5wgBODU9xzfYtzgtmEUSAu5A8/eCPhWJw/evwoAI/u7iESi3P/bd0OS2awkzvWNXFyaIqhycREwbJGrm80CuStQolHeFdXKa+eGeP4xUkCwVn+6N+OclNHPf/+1uL/PTuiQETkF0TkiIjERWT7EuPuFZHjInJKRB6et71RRJ4VkZPJv2+pVXdWN1fzm++6hicODvDc0UH++bUL3LGuifUmffctxR3JTKu/f/ksPzw0wL+90U9LbQVt1cZ99Vbirs4yKko9/OOr5/jTp95kbDrMn/zsTW+JBeGc8occBn4W+PJiA0SkBPgiiSVte4HdIvKYqh4FHgaeV9XPJxXLw8BD+Re7cDxw1zq+f6Cf//zN/QRnY/zBB653WiSDzdzYXk9zTQVffvHM3LZf3N6JyLiDUhnspqZc+ODmdr69p5dwNM6v3rmGjR3FXf9h4dSStseA5dJRbwFOqeqZ5NhHgfuAo8m/O5Ljvgbs4i2mQMpLPfyPD9/EL375Fdrqvbzn+lanRTLYTIlHeOZTd825sCCxXsgrL//IQakM+eBjt3fznb29tNd7+a/3bHBaHNuQ5RY8yevFRXYBv62qe1Ls+3ngXlX9teTr+4FbVfVBEfGrqm/e2HFVTenGEpEHgAcAWltbtz366KNZyTo1NUVNTeF7UD13fpamSmFry+K63inZ0sGtsrlVLjCyZYtbZbPk+sGpCNc3lbChwT0xrnTfs7vvvnuvql4ZblDVvDyA50i4qhY+7ps3ZhewfZHjfwH4u3mv7wf+Kvncv2DseDoybdu2TbNl586dWR+bb4xsmeNWuVSNbNniVtncKpdq+rIBezTFPTVvLixVfU+Op+gFuua97gT6k88HRaRNVQdEpA0YyvFaBoPBYMgQN6fx7gbWi8gaESkHPgI8ltz3GPDx5POPAz9wQD6DwWC4qnEqjffDItIL3A48ISJPJ7e3i8iTAKoaBR4EngaOAd9S1SPJU3weuEdETpLI0vp8of8Hg8FguNpxKgvre8D3UmzvB94/7/WTwJMpxo0C786njAaDwWBYGje7sAwGg8HgYowCMRgMBkNWGAViMBgMhqwwCsRgMBgMWeFoJXqhEZFh4HyWhzcDIzaKYydGtsxxq1xgZMsWt8rmVrkgfdm6VXXFwo1XlQLJBRHZo6lK+V2AkS1z3CoXGNmyxa2yuVUuyF0248IyGAwGQ1YYBWIwGAyGrDAKJH0ecVqAJTCyZY5b5QIjW7a4VTa3ygU5ymZiIAaDwWDICmOBGAwGgyErjAIxGAwGQ1YYBZIGInKviBwXkVPJNdgdR0S6RGSniBwTkSMi8ltOy7QQESkRkf0i8rjTssxHRHwi8h0ReTP5/t3utEwWIvKp5Od5WES+KSJeB2X5iogMicjhedsaReRZETmZ/JtyJVAH5PpC8vM8KCLfExFfoeVaTLZ5+35bRFREmt0km4j85+T97YiI/Gkm5zQKZBlEpAT4IvA+4AbgoyJyg7NSARAFPq2q1wO3AZ90iVzz+S0Srfjdxl8AT6nqdcBmXCKjiHQAv0lilc6NQAmJdXCc4qvAvQu2PQw8r6rrgeeTrwvNV7lSrmeBjaq6CTgBfKbQQiX5KlfKhoh0kVh64kKhBZrHV1kgm4jcDdwHbFLVG4H/lckJjQJZnluAU6p6RlUjwKMk3nBHUdUBVd2XfD5J4ibY4axUlxCRTuCngb9zWpb5iEgdcBfw9wCqGlFVv6NCXU4pUCkipUAVl1bhLDiq+hIwtmDzfcDXks+/BnyokDJBarlU9ZnkGkIAr5JYwbTgLPKeAfwZ8LuAY1lLi8j268DnVTWcHJPR6q5GgSxPB9Az73UvLrpRA4jIamAr8JrDosznz0n8YOIOy7GQtcAw8A9J99rfiUi100IBqGofiRngBWAACKjqM85KdQWtqjoAiUkM0OKwPKn4FeCHTgthISI/A/Sp6htOy5KCDcA7ROQ1EXlRRN6WycFGgSyPpNjmmtxnEakB/hX4L6o64bQ8ACLyAWBIVfc6LUsKSoGbgb9R1a3ANM64Ya4gGU+4D1gDtAPVIvLLzkpVXIjI75Fw737DaVkARKQK+D3gs07LsgilQAMJN/jvAN8SkVT3vJQYBbI8vUDXvNedOOhWmI+IlJFQHt9Q1e86Lc883g78jIicI+Hye5eI/JOzIs3RC/SqqmWtfYeEQnED7wHOquqwqs4C3wXucFimhQyKSBtA8m9GLo98IiIfBz4A/JK6p8BtHYkJwRvJ30MnsE9EVjoq1SV6ge9qgtdJeAzSDvIbBbI8u4H1IrJGRMpJBDUfc1gmkrOEvweOqer/cVqe+ajqZ1S1U1VXk3i/XlBVV8ykVfUi0CMi1yY3vRs46qBI87kA3CYiVcnP9924JMA/j8eAjyeffxz4gYOyzCEi9wIPAT+jqjNOy2OhqodUtUVVVyd/D73AzcnvoRv4PvAuABHZAJSTQedgo0CWIRmYexB4msSP+VuqesRZqYDELP9+ErP7A8nH+5c7yADAfwa+ISIHgS3A/3BWnARJq+g7wD7gEInfp2NtMETkm8ArwLUi0isivwp8HrhHRE6SyCr6vEvk+mugFng2+Vv4UqHlWkI2V7CIbF8B1iZTex8FPp6J9WZamRgMBoMhK4wFYjAYDIasMArEYDAYDFlhFIjBYDAYssIoEIPBYDBkhVEgBoPBYMgKo0AMBoPBkBVGgRgMBoMhK4wCMRgcRETellzDwisi1ck1GTY6LZfBkA6mkNBgcBgR+e+AF6gk0afrTxwWyWBIC6NADAaHSfZY2w2EgDtUNeawSAZDWhgXlsHgPI1ADYleTo4tYWswZIqxQAwGhxGRx0g0slsDtKnqgw6LZDCkRanTAhgMVzMi8jEgqqr/LCIlwE9E5F2q+oLTshkMy2EsEIPBYDBkhYmBGAwGgyErjAIxGAwGQ1YYBWIwGAyGrDAKxGAwGAxZYRSIwWAwGLLCKBCDwWAwZIVRIAaDwWDIiv8fahR3U7pWOdcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# generujemy wartości x...\n", + "x = np.linspace(0,5*np.pi,100)\n", + "\n", + "# generujemy wartości funkcji\n", + "y = np.sin(x)*np.cos(2*x)\n", + "\n", + "# rysujemy wykres\n", + "plt.figure()\n", + "plt.plot(x, y)\n", + "\n", + "plt.xlabel('x')\n", + "plt.ylabel('f(x)')\n", + "\n", + "# powtarzamy dla pozostałych funkcji\n", + "\n", + "plt.grid()\n", + "\n" + ] + }, + { + "attachments": { + "73f87ac8-0185-4cd5-80a9-2ca893cdb79c.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAARMAAAC9CAIAAAAfqg7FAAAAA3NCSVQICAjb4U/gAAAgAElEQVR4Xu2dB1hUR9fHz+7SpYv0Jk1EKYKoYAOMvcSGNZY3GvOqoIlvqjHtSzfR2DUxRhMTY+/GXiKiKFIERFFUQDpK77DLdwYNMcIuy7rA7t5zn/vwwL1zy/xm/sydmTPn8Orq6oA2IkAEWkiA38L0lJwIEAFGgJRD9YAIyEKAlCMLNbqGCJByqA4QAVkIkHJkoUbXEAFSDtUBIiALAVKOLNToGiJAyqE6QARkIUDKkYUaXUMESDlUB4iALARIObJQo2uIACmH6gARkIUAKUcWanQNEeAXV9YQBSJABFpKgP/lsVstvYbSEwEiIEjvPMrLxtDepAOxIAJEQHoCfGdT3ff2xRdV0Deb9NAoJREA/nfBnnmlVf93JJFgEAEiID0BvqeN4cIAx33R6aduZkt/GaUkAhwnwEalQ4Kc3Sz0lx6Izy+r5jgOyj4RkJIAU46GGn/lZE/s6iw7GE8OPaQER8k4TuDpTKiruf6bg13+jM8+fCOT40Qo+0RAGgL/2BC8PsDRx87ow4MJWUUV0lxJaYgAlwn8oxwBn7ci2LNWVPf2njiRiJywcblWUN6bJ/AvuzWcD/1gZNdLyY+2R6Q2fymlIAIcJvC8xee0XrYBXTp9dfxWcm4ph7FQ1olAMwSeVw6Px1s+wUNLXbBkd2yNUNTM1XSaCHCVwPPKQQ6m+lpfj3ePSy9ac/YuV7FQvolAMwSaUA5eMay7xUQf6/Xnk6NS85u5AZ0mApwkwBM39VlSWTN8dRiPB8cXD9DVVOMkHMo0ERBLoOk2B5PraamvmuyVUVDxyeGbYq+mE0SAqwTEKgeB9LQ3XhjotDcq/WgcGRZwtYJQvsUQkKQcvGTRIGc0pl66Pz6zkAwLxCCkw5wk0Ixy1AX81ZO90LDgzV2xQjIs4GQVoUw3SaAZ5eA1aFjwyZhuVx/kb/rrXpO3oINEgIMEmlcOQgn2sR7pbrHy9J2YtAIOMqIsE4HGBMSOSj+XFFfvjFgdhlahxxb1w2G3xjeiI0SAUwSkanOQiIG2+uopXukF5R8dokFqTtUQymzTBKRVDl6Ng9Q41HYgJmN/dHrTN6OjRIAzBFqgHGQSEujUy9542cGE+3lkSc2ZOkIZbYpAy5SjJuCvmuKFfgtC/4ipqhU2dUM6RgQ4QaBlykEkloba3070vJlZ/PXx25wgRJkkAk0RaLFy8CaD3cxm+9tvDU85nZjT1D3pGBFQfQLSjko/RwI/1cZvuJxeUPHn4v5Whtqqz4lySAT+TUCWNgfvoKkmWDfNu1YoCt0RTUtHqVJxkICMykFSnU06fDXBIzqtcMWpOxwER1nmOAHZlYPgxnhaTu1li/Zs55NyOc6Rss81AjL2cxowVdYIx64PzymuPLaoPw67cQ0f5ZezBF6ozUFq6CVnw3Tv6lpRCHV4OFuJOJnxF1UOQnPopPvNRNbhWX6CZng4WYk4mWk5KAe5jfKwnOVntznswUkKwsPJasTBTL9oP6cBGc7wBG+68iCv7EhoP4o6ysGaxLUsy6fNQWo4w7N+mjefz5v/ezQOG3CNI+WXawTkphwEZ2Osg/agt7OLMZQI1zhSfrlGQJ7KQXaBXUxDA532RKXvvJbGNZSUX04RkLNykN3il1z6O5t8dPhmXHohp1BSZjlFQG4jBM9Sw0i9o9dewiM4WmDcQYNTQCmzHCEg/zYHwaFaNr7inVdStXhnDHlp40hN4lo2W0U5CNHD2vD/Xu4WdvfRytNJXGNK+eUCgdZSDrKb0st2iq/N+vP3TiRkcQEl5ZFTBFqln9NAEKdHJ/8QcTen5ODCvs5mepwiS5lVbQKt2OYgOJwe3fSKj7aG2rztUcWVNaqNknLHKQKtqxxEaW6ghaMFD/PL39gZS8HiOVW3VDuzra4cxOdrb/zxaLdzt3PRM7Vq06TccYdAG4UxfKWPXWJW8brzya4WemhYzR2+lFNVJdC6IwTPUsPVb1M3RyRmFu+d79fN0kBVgVK+OEKgLb7WnqBEz6DY4UHP7vN+jXpUWsURvpRNVSXQdspBgqZ6Wj/O9EHZzP8tCpsgVWVK+eICgTZVDgJF24Lvgj0jUwpwJYK4gPJc4E55VHYCgk9CZ0BdHQg0gN9GKupirofGbD+Hp+hrq3vbGik7QXp/bhJQg7XeT3OuaQDahtDBBHQ6QodObNc1A11T0LMAPXP2U0NHXozefMnlTk7JF8cSHTp1wCU98rot3YcItBkBXl3sH1BRCJWFUFEA5flQ/gjKHkH5YyjNBdG/Z/21jUDfCgyswcAGDG3ZbmQHRvaAx1u+lVXVot+CtPzyffP9sRVq+Q3oCiLQngTEj0rjJxxqCfVTmg3FWVCSCcWZUJQBRelQlAaVRf+8tZYhGDtAR0cwdoSOTmDizH5q6jabrayiijHrwjXV+GjVZqKr2Wx6SkAEFIeAeOVIfkdUTmEaFKRCwQPIx/0+5N+DwocAdU+v07cGU1fo5AqmXcHUjf3S1MfejYeFk3644m5l8Nvc3uj0UPIz6SwRUBwCsiqnyRzUVDIhPbrD9jzcb7Nfaivr0/JYo2TuDmbdwcKT7diDqt+OxWUt3BHtY2uETVBWUSW62H17aJexPayafAIdJAIKQkCuymmcJ5EQClIg52b9ngDZ8VCY+jQVDjmgfiy9wbLHu1fUdt2qaLhaW13w1Xh3Ek9jnHREcQi0snIaZxQ/87ITIOsGZMVCZixrlOo/8FJFpjF1TjEi52iR8606WzNDvfD3ghpfTUeIgIIQaHPlPJfvymJU0dc//e7JT+7BTzbnFeD5ijqNG3WOfQaOBFs/sPEFLTJyU5DaQq/xD4H2Vk79m/T9+lxGIftas4DH3vy7Pvw7furJXeEB1AmBx2e9I7t+YN8X7PxlGwGnAicCciegEMo5GJPx/v74ir996vIAPh3TbaaPCaRHQtoVSAlnvwjRSJQHFh7QeQB0DgA7P9DoIHccdEMiICUBhVAOviuK59uTSZmFFTixU1RRg3OjO+f16aD59/IhHLXLiIKUMHgQBunXQFgNfHWw6QUOgeAYBJZewKcRbSlLnJLJh4CiKOfZ3Jy7nTP3l+sDXDptntlTXdDImq66HB5GwP0LcO88ZMexC9GIASXkPBgcB4GemXzA0F2IgEQCiqgcfOE/rqXh91uwj/XyiR48Hn6+idnQUAgllHwW7p2F0hyWyNwDXIaC81Cw8qaGSAw1OiwHAgqqHMwZOi1Yc/buoiCnJUO6NJ9RkQjni37cNalPRbFHdQXUiUDHhEmoy3DWHElhCtT8IygFEXiGgOIqB1fvvLsvbvf19M/Gdp/Rx06aUgvYFoDJLkzaD/fOQdJxSD7N7OsEmuAQAK4jmYr+NlyQ5m6UhghIINBGHjwkvIG4U/iR9uU498el1R8dSujYQWOEu4W4lM8f1zEG94lsF9awoTmU0O2jcPckHOGxCaKuo6DraGboTRsReAECitvmPMlURbVw+k8RCRnFv7zay8+xo+ScPm1zZl94PhnafaP5D+rn1hFmBIQbWv24vcx2487PJ6a/iYAUBBRdOZiFwvLqiZuuZBdV4jh1dytJ9gRilfMsiMf3mH4SD0FmNDts4QXdxkG3sWyhEW1EQGoCSqAczAvO80zceLlaKNrzX//OJmInQKVSTgMaXCWB+rl5gM0U4WbVE7pPYCrSl/qzUGrKlFD1CCiHcpB7cm4pruRBM2pcQ4oed5ssiZYpp+EWaM2N+knYx0y50Uyhc39wD4auY9jactqIgBgCSqMcfP/49CL0dWhhoLX7dT+jpkLByaicBjS4pihhb3r4KuvaKjYih4PanlPAaTCoUdg5MdWHw4cbzdArMAt3awO0KkjNL5+99VppVa3837STCwQufcWq6+sWLtDzVTYut3MarHCBY/+D9CjmIYg2IvA3AWVSDr4zDq9tmOadkFk8Z1tk5d8WonIuTR4vSbMDDP8altyG6XuZRU/Mb/BTEKzvBWErmTMG2ogAgJIpB4vsJTezlZM8r6Xkt7qjUIEas4WbuAXeugOj1zBnWmc/he+7wW8TIGE/4BcdbRwmoHzKwcJ62cvqi7Hu55PyMIJvrbD1vezi0jqfWfDqCQiNhv7/g9xbsPc/sMIVjr8HOYkcrjyczrpSKgdLbFpv22Ujux5PyH5rz422C3+NTkiClsEb8fDKPrZMKPIn2OgHmwdB1C9QVcrpesS9zCuu9U2zZTG3v0NVrQhX9WBMRfT4weeLN6lu9l4tSoBrgZxeYnvZY4jbCdG/wpFFcHIpG8v2mc0WC9HGAQJKrBwsnYWBTjhOsPZcMoYYwSDybV1eHTqC30LoswAeXoPoX+DGTojaiq582LgcTqrSktW2Lo82fZ5yKwdRLRnsggFFfrh4X02Ac1MgYS1Pa3HFR9r2ZvvQLyFuF1zfCodD4eQyNhfkOwc6SbFEorXejO7bigSUtZ/TgARNqt8b7vpq385bw1MKcgPac9IFbQ56vw4LroSaO59W47P2Bweyt42CmweZ1TZtqkVA6dscLA4Uz4ejugpFol+u4B+4rqdO0jLS1i4/Hi9eSxf3wcF7IWY7XP8Z9swCPUv2CYcDdLRAqLX5t9X9lb7NeQIKpfLJmG64AK44v9dXx28rREwrjKfS701YFAtTdzLn2uc/Z3NB++cxcwTalJ+AKrQ5DeLBQQLsdPx48T4qZ+mIru3Z8jTUDByIw7WouD9KhsjNEPM76wtZ+UDv+Wx1EFnEKa2EVKTNaRAPOmqb7W+/OezBZ0dvKUTL01AzTJxg+DewJBGGL2cBi/bPhVXu8Ne3bGibNiUkoDptToN4Ph7thi3Pz+EPaoQiFFLbzfNIU/xa+mwUwfc1SD4DVzeyT7iw78BjMvSZz77oaFMeAqqmHCSPH2kfjXLTEPBxqBrF88U4d0GbTZJKWfAYktVlCNtzbzP94EQQTgfh1CrODqGnnnYYWZfyvSnZPwRUUDlPxIND1RgNbs25ZGZnMNFDrbHHQ0WoBhica/RqCPqIDcFd+xG2jwPTbuAfAt0nUhdIEcpHwjuoVD/n2Xxiy4OO2t4a4nIgJiNkR0xVrVAChXY+hbYIA9+GNxPg5Q0sJsrB+awLhCsaMNokbYpKQGWV8wR4SJDzh6PcTtzMnvdrFLrRUdRSqH8vNU3oMR3mX2bmpNjnOftp+XIHOLG0PoYkbQpHQMWVg7zn9Ov8zQT3i3fzZm29Vlyp8HP52MnBDs/Mg3MtuoTrGMDVTbDGi80Codcr2hSJgOorB2lP9rVdPaVHdGrB1B8jHpUqx4q0ZE2dLzrZw+JY6DUPbh2Fjf7wezCkXlakysPpd+GEcrCEx3haog+De3mlkzZdeRLlSjmKHX2RDvuKdYECP2DerbYOhy1DmNdS9KNNW7sS4IpyEHKgq+n2Ob3zSqvQddvdnJJ2xd7Ch6O/34HvwBsJMPxbKM6CP6awJihuNwhbwY1JC1+Ns8k5pBwsY197413z/GpFdeg0NCpV2UauNHSg9zxYFA3jfmBDcPtfg7XeELkFMCwXbW1OgFvKQbxulvr75/sb6aiju+qzt+pD7ijXJlBnK3/mX4EpOwCNSo8tgdWecHkdVJcpVz6U/W05pxwsMBtjnb3z/Z1N9eZtj9oVmaaURYhWCBjXZO5ZmHkI0E3cqQ/g++5w8VsW9YS2NiHAReUgWIxG+se8Pn2dTN7dF//96TuKZRsqfcHjELZDAMw6AnPOsKip53Ahgzv7WZ4v/T0opWwEOKochKWrqbZlVk8MqLj67N139sahhZtsBBXiKhtfmLYLXr8IDgNZy4MmCKc/gtI8hXg3FX0J7ioHCxTD92Ic0kWDnPdEpb+6LVIJ5kkl10ILT5i8HRZEgMswCF/D9HPyAyhRwr6c5GwqxllOKweLgJm3DXZB/Vy59zh4o1JN9YirQGi5g35JQyJPaGoLr6yD1R5w/F02lk2bXAlwXTlPYE7qaYMx4TBKz9j14VUV5nIl3E43M3H+upPdTCs35r/q2mY2/vbnO+QUW46FQcp5ChNHC/Yt8MeFCdlpU8qKVcTVU4a6JozdAKHXwSMYrm+B1V71+qH2Rw4KIuX8A9HFTO/gwr7etqZ5mWMwoLyyDrg1rhXGDvDyegiNAs/J9frxZN9vJdmNE9IR6QmQcv7FCkerf5/be1wPq5Wn7yzaGavoCxOkL2dMiYFQx6yFkPr258n324n3afygRQifTUzKeR6dlroAo4y8O8z1aFwmxlfMKqp4PoVS/42xuFn7c531f67+wNqfU8ug7JFS56ldXp6U0wR2HHCbH+D408yeDx6VjV4bfj1F5SYW8fsN+z8hkcxz1ZX1sMoDznxC86dNVAXxh0g5YtkM6mp2YIG/rqYAg5P+FpGqOt2ehhxjUJPxP8CCq8wd3KVVTD/nv2QerWiTggApRxIkZzO9QyH9+jmZLDuY8P7+eIV2ZiApHxLPodkbzv/gKm7HAPjrGzb/c/E7CgckERk7ScppBpGBtvqWWb6hQU47Ix8Gb7qSXlDezAVKetrMDSb/xux3bP3g3GdP7a9rVKuPJ9eiIeU0jxN9Hf5vSJcfZ/g8yCsbtfbSX3dU1x4M7XfQ/g3tR83dmf31mh4sLl1tdfOMuJeClCNtmQ/pZn44tJ+5vhbGlEfz6rYLsSjtC8ovHdqPzjwIs4+BoR2LaL/OB2J3gEixPQfJL/dS3omUIyUolqyzSYcDC/ribA+aV8/8+WpeiXI4A2lBDp9Nat8Pgwq/Y+qYVJ7HXMBt6MMCAZH/g78RkXJaVq+0NQQrgj2XT/C4nlIwYk0Y2om27HrlSs3jXdPRf92iC0z6FY1jWSCgzQFw9wy0Z3wvRSFIymlxSeBszyRfG7TT0dNUm/ZTxMpTSW0RWb7Frym/C3D9HE77LLgCYzexMevfJ8DWEZCKUb44vZFyZCz+rhb6R0L7TfC2RtfVOOGDdtYy3khZLsNAQF5TmfHOyBWQfx+2DoPfJkJWnLK8vtzfk5QjO9IOmmrfBXuumuyVmFk8bNXFY3EcsEHGUFm+c2FRDLz0KaRHwg/9Yc9/4PE92SEq7ZWknBcturE9rP5c3N+hk+7CHdH/232jtIoDPtDQf1W/N2DxDej/Ftw5Aet84fAiKMp4UZRKdT0pRw7FZdexw57/+i0KcjoQkz589cXKcis53FTxb4GxuAd9yAKhYvB6HLZG52+nPuSO8RspRz41FF0aYNCR3a/78YCXnTY1P3egaprqNKalZwYjvmXG193GweW1bPEcGu9wwPkbKadxXZD9SE97Y/xym9qLhcgeszY8Pp0z3s9w8c+4Tcz4zb5vvfGOF1sCpNLGB6Qc2XXS5JXojOqr8e5bZ/sWVlSP3RC+4lRSda0y+6NqMpPiDqLx29Q/YM5pMHGGP9+C9b4Qt0dVJ09JOeJqwQsdR+/vp94Y+LKX5dpzyaPXXop9yCXTffSZiJY70/eChh4Lwf3DALh7WvUmT0k5L6QQCRcb6KivnOSFzhCLKmrGbwj//GhieTUHht2eEMHJU+fBzPJ6/E8Zj5Pg94mwbRQ8jJSAS+lOkXJat8hwedypJQOm9rL96dKDoasuXkjKbd3nKdTd0fm1R/Asq66rjK3hURJseQl2Toe8JIV6R5lfhpQjMzppL9TXUsfI8rvm9cHxt9lbI0N2ROcWcyhuRy2Pf1C/Exu8xuBZ9/9ilqOHQqAoXVp8ipqOlNNGJdPboePxxf3ffMnlVGLOoBV/bQ1/oOLWbs9x1dRlwbMweGPv/0LcLlij9JM/pJw2Ug4+RlNNsPgl5xOL+3vZGn56JHH0OlX0DSIZJwb8weCNaPz2ZPIHgwdf+h6Uc+UpKUdyUcv/LNrp/Ppqrw3TvQvLqzF03Ju7YnO49PHGgBrZMc8h/70ENn2Yzx1sf6J+UbrIjaQc+Wuj2TviOoUR7hZnlgxcGOiIdqKB311Yfz65soZjiy7Nu8P03TD7TzCwgiOLYKMf3DqiRIPXpJxm63lrJUBT67eHuqJ+0LfOtyeTsPNzKDZDBX1TSeaHNgc4c4rOQ3C13K5XYMtgSLkk+QoFOUvKaeeCsO2o8+PMnjte622oo754Z+zYDZcj7qv0OtPGvHHyp+toFvZn9Bo25rZtJPw+CXJuNk6oUEdIOQpRHP6OJkdC+uE6bRywnvJjBDoJqa7spBBv1mYvIVADn1kQGg2DPoa0CNjYFw7Mh8K0Nnt+Sx9EymkpsdZKj76pJvhYn38r4P3hrtGpBZkps/IyR97PK22t5ynmfXHlT/8lbPDaPxQS9sFaHxZ2TiHDnpJyFKsGoT/41wc6hr0TND/ASVThPvj7i2/vuZH2WEXdI4pjr2MMQz6DRdHgPgkiNjC3iYq3coGUI6702vM42rxhMIWL7wTO9rc/dCMzcMUF1E/Ko7L2fKe2f7aBNYxdX79yoR+uXHj8jS1EbgFhTdu/SJNPJOU0iUUhDnbS0/xwlFvYO4Ez/ewO38gMWnFh8c6Y29nFCvFybfYSGPZ06h8h5s6ZappwbAms7w03DyjC4DUpp82qgIwPMtPX+nh0t7B3A+f063w6MWfYqrA52yIjU/I5NX6doKUbau4MU3eCQAP2zIbNQcwErl03Uk674pf64aZ6Wh+MdLv8XhBavkWnFaBveBy/xthYHDJ+w8FrjFYyPxxe3gClufDrGNg+HrJuSI1QPgnxHxYavM/YclVNPveju7QJAUMdDbR8mzfAYW90+paw+yE7YqwMtWf42U3xtcFTbfIK7f0QdPvWYzoLOIeu4sO+Y8vmuk+EoA8AY2m18obLqw7EZGwNT0nOLTVFL5Wt/Di6vfwJoIfeGX3spvWyPXMrZ1t4ytfHb686c2eMp+Urfew8rA3l/zwFvKO6FviHgPcMCF8NVzZA4kHw+Q+zxdY1bY2XxbmB7RGpe6PSSypru1nqYzDMUR6WpJzWQN0W9xTweUO7meOOYwa/XE49GJOx+3q6u5UBrqIb7Wmhp6XeFi/Rvs/QMoBBH0GveSxg1vWfmecqv4VsIkhLXy7vhZaEJ29m/3EtLeJ+vrqAN7y7BQ7V+NgZodkh3p+UIxfI7XkTV3N99Bny/gjXQzEZv0WkLT0Q/9nRRLQorSy31tRW+gVkzZPVM4dR34NfCPO5c3E5+4ob8Bb0nAPYLsm0YU8mIaN4b9RDnA8oLK+xMdZ+e2iX4J7W2NV89n6kHJnoKt5FuPJ0hp89frCht5Dd1x8euZFVWjVVoFb03ckk9ELqZKqreK8s1zfCmKfB26DvYrZs4eRSiNgIAe+D5xTAfpHUGwbkw9F/bL3v5JRqqPGHuJlN8bX1d+yI5h2N70HKacxEiY/gh0QPWyPccSLo1M2c/TEZGy4krzufjP7j8RNulLslGpgqcfaafXXLHjDzENy/wPRzaAFcXgNBH4LryIOxmWiNjl7zLQ1ZA4L/Sp69E66POh6fdSw+KzKlAI972xp+Ma479mQw0KWEB5JyJMBR4lM6GmpYP3BHE9KjcVk4fr38RBLubhb6w7qz3pGLme6T73UlzqS4V3cIgNfOQ+IhOPc57Jqeb+Sx/9HYjBpXTJ5RWIGRkvEXJIM2GTg/hj2ZqLQCXOLQxUwPRYUDLTbGUv1z4XFqQk0cai4cf5hfjrXkRMLTioKf74NczYJcTXt1NkZjOXEEArYF4KkLsy+IS9Ds8Re/Az5CxpsIa+HGjpzDn5jB44tC9+W1kxPq2OA1epO0NNTCTzL83dVcD/uEuLf0g5banGaLXkUS4L/Suf0dcMdW6Myt3HO3c3ZGpm27nKKpxkfvIgOcTXClA1ajJr/plRUBrlzwnjlgt94rgtML1fYc1Vx2VNh7ZW3w/SpL4w4a+EGLPRkpW5jGBEg5jZmo+BFTfa1pvW1xr6gW4io6DLV98W7e58duYbaNdNR7d+7o29nY194Iv+vUBMpqYiIS1d3NLb2emn/1fn4NT2OLcORuYeBctWNzBX8O04j8UxA4ZvIaQIvSF9hIOS8AT8kvxRlV9OKLO+YDe88Y8/TK/ceopRM3s/GItrrA3dogv2igplZW6uMyW2MdRe4XYacju7gSXeDHZxTh6GJsWmFJfSAjnOz3tDFMSC8qEel8Xxv8a+2QxRqHp8MZ5jYEQ2jhWiB0xyPTRsqRCZvKXYSDTriuDnfMWXZRJf63xhDCWAUri/oU54sGfnsBzU26Wurj55yzmZ6Lqa6jqW7HDhrtqKWi8prkvJJ7uWVJOSU4F3w7q+RxWTW+PA4gu5jpjfay9LY1wllL+45M8DjQ/GRsTcvQXH/oCkFnIVz4Bq5uhOhfoM8CZo6Ak6ot3GiEoIXAOJYcAzHcyipOzCq+mVmEQR2xV90QlE5PSw3D3GNbZGWkbW2kY2mghWbduKOinu0sydi5r+eMH12FFTV5JVUz9oYKa/WnuS1Myy9PfVyOP/PrdYKbljofh8VwOrirhZ67tSF+ZGJbKlUp5d2B818wyx1tI+j7BrNFwBWpUm+kHKlRUULAdTF1WUWVd3JKHjwqe7LjkB0O9dYI6xrw4H99Ix0N7ILjT1RXROZ5Pr96ivt4HMHD0QjsO6nxeXweDy/Au4nq6lCcuFcJRWVVteVVQvzKQh/22KQUlFejPGpF/7qzhYG2XUcd3FG0OBrm2EkXRYuGSLIXTmYsG7xOPg26ZjDgbfCeBRgLVYqNlCMFJEoikQC2DLklVVlFFTiliF96j0qr87HSl1ZjBCE0kSyurCmrEqINGJPXPyp4/o4oKnSjpaMhwCFjfW11Q9x11E10NXF5H/60MNCyMNQ2w0/GVhq0SL0MZz+DtMtgYAsB74LHFMBxOYkbKUciHjopPwLYwqB2hKK6WpEIf2L3Ay0nsfHREPDRnrIdu0xPs4iyvneW6ScrFjo6MeOdbuMBwzGI2Ug5YsDQYW4SQP3cPgrnv4TcRDDrDoFLocsIqDeOfm4j5TxPhP4mAiASMm8HqJ/8e4C2cIHLwGnQc/oh5U3n/TwAAAC1SURBVFA9IQJiCKDxTtxONn5dlAY2vVn8H4eBDUlJOWKo0WEi8IQARtiO2c4cvpVkgn1/9v1m549nSDlUQYiAFARqKtm0adgKKM0BhwBsf0g5UlCjJETgCYHqcrZsO3wVlOWRcqhSEIEWEqgug2ubSTktpEbJiUA9AbETPcSHCBABCQRIORLg0CkiIJYAKUcsGjpBBCQQIOVIgEOniIBYAqQcsWjoBBGQQICUIwEOnSICYgn8P1iKC2/fhxBmAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## Zadanie\n", + "Rozwiąż graficznie nierówność $f(x) < g(x)$, gdzie\n", + "$$ f(x) = x^2-3x-6 $$\n", + "$$ g(x) = \\cos(x) $$\n", + "\n", + "Zaznacz obszar ograniczony przez te krzywe.\n", + "Wykres z rozwiązaniem powinien wyglądać mniej więcej tak (u Was będzie inny!):\n", + "\n", + "![image.png](attachment:73f87ac8-0185-4cd5-80a9-2ca893cdb79c.png)\n", + "\n", + "$ x \\in (-20, 70) $ (uwaga - to NIE jest poprawne rozwiązanie - macie je sami znaleźć ;) )" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAza0lEQVR4nO3dd3xV9f3H8df3Zg+SkEXIDiPMhBXCRkRQlmAdFMFRq9JhrVpbrbVL/bW12vpr+1OrKFQtKjhwIjIUZI+wNyEJSVhZkL1zv78/TmwR2fcm5557P8/H4zyybs75kIT3/d7v+Q6ltUYIIYR12cwuQAghhGMkyIUQwuIkyIUQwuIkyIUQwuIkyIUQwuK8zbhoZGSkTk5ONuPSQghhWVu3bi3VWked/XlTgjw5OZmsrCwzLi2EEJallMo/1+ela0UIISxOglwIISxOglwIISxOglwIISxOglwIISzOaUGulPJSSm1XSn3qrHMKIYS4OGe2yB8A9jvxfEIIIS6BU4JcKRUPTAZedcb5zmdNdgkvrDzclpcQQog2UdvYzBOf7CW/rMbp53ZWi/xvwCOA/XwPUErNVkplKaWySkpKrugia7NLeW75IYqr6q+sSiGEMMmnu07wr3VHKK5qcPq5HQ5ypdQUoFhrvfVCj9Naz9FaZ2itM6KivjXD9JJMH5xAi13z3tajV/T9QghhloVbCukaFURGUkenn9sZLfIRwFSl1BFgATBWKTXfCef9lq5RwWSmhLNwSyGys5EQwioOFVWxNf80MwYnopRy+vkdDnKt9WNa63itdTIwA/hSa32bw5Wdx4zBCeSX1bIht6ytLiGEEE61cEshPl6KGwfGtcn5LTeOfFJaZzr4e7NwS6HZpQghxEU1NLewaNtRru0dQ0SwX5tcw6lBrrVepbWe4sxzns3fx4vvDIhjyZ6TlNc2tuWlhBDCYcv2FnG6tonvDk5os2tYrkUOMGNwIo3Ndj7YfszsUoQQ4oIWbCkgvmMAI7tFttk1LBnkvWND6BcfyoLNctNTCOG6CspqWXe4jO9mJGCzOf8m59csGeQA3x2cyMGiKnYUlptdihBCnNPCrAJsCm7OiG/T61g2yKf2jyXQ14sFm+WmpxDC9TS32Hk36yhX94imc2hAm17LskEe7OfNlPTOfLLrONUNzWaXI4QQ37DyYAnFVQ1tepPza5YNcoAZmYnUNrbwyc7jZpcihBDfsGBzAdEd/BjbM7rNr2XpIB+QEEZqp2AWyJhyIYQLOVlRz8qDxdw8KB5vr7aPWUsHuVKKGYMT2VlYzv4TlWaXI4QQALybVYhd0y7dKmDxIAe4cWAcvt42mekphHAJdrtmYVYhI7pFkBQR1C7XtHyQhwX6MqFPDIu2HaW+qcXscoQQHm5dTilHT9fx3cGJ7XZNywc5wK2ZiVTWN8tNTyGE6eZvzCc8yJfr+nRqt2u6RZAP7RJOt+hg5m8qMLsUIYQHO1lRz4r9xdySEY+ft1e7Xdctglwpxawhxk3PPccqzC5HCOGhFmwpwK41szKT2vW6bhHkADcOjCfAx4v5G/PNLkUI4YGaW+ws2FzI6O5RJEYEtuu13SbIQwN8mNovlo92HKeyvsnscoQQHmbF/mJOVtZz29D2bY2DGwU5wG1Dk6hrauGDbbK8rRCifb25KZ/YUP92mcl5NrcK8rT4UNLjQ5m/MV+WtxVCtJu80hrWZJcyIzMRrzZcrvZ83CrIAW4bkkR2cTWb806ZXYoQwkO8tSkfb5tiRjvN5Dyb2wX59f1iCfH3lqGIQoh2Ud/Uwrtbj3Jtn05Eh/ibUoPbBXmArxc3DYrn8z0nKKlqMLscIYSb+2z3Ccprm7htSPvf5Pya2wU5wKwhSTS1aN7JkvVXhBBta/7GfLpEBTGsa4RpNbhlkHeLDmZYlwje2lRAi11uegoh2sa+45VsKyhn1pAklGr/m5xfc8sgB5g1NJFj5XV8dajY7FKEEG5q/qZ8/Lxt3DQwztQ6HA5ypVSCUmqlUmq/UmqvUuoBZxTmqGt7xxAZ7Mf8jXLTUwjhfFX1TXy4/RjX94slLNDX1Fqc0SJvBh7WWvcChgL3KaV6O+G8DvH1tjFjcAIrDxZTeKrW7HKEEG7mw+3HqG1sMWUm59kcDnKt9Qmt9bbW96uA/YC5rzNazRySiE0pWX9FCOFUWmteW3+E9PhQ+sWHml2Oc/vIlVLJwABgkzPPe6ViwwK4rk8nFmwppK5RNp0QQjjH2sOl5JTU8L3hyabe5Pya04JcKRUMvA88qLX+1gaaSqnZSqkspVRWSUmJsy57Ud8bnkJFXRMf7pD1V4QQzvH6+iNEBvsyOb2z2aUATgpypZQPRoi/qbVedK7HaK3naK0ztNYZUVFRzrjsJRmc3JFenUN4bd0RWX9FCOGwgrJavjhQzMzMxHbdPOJCnDFqRQFzgf1a6+ccL8m5lFLcNTyZg0VVbMyV9VeEEI55Y8MRvJRilgvc5PyaM1rkI4DbgbFKqR2txyQnnNdppvaPpWOgD6+tzzO7FCGEhdU0NLMwq5CJaZ3pZNK6Kufi7egJtNZrAfN7+y/A38eLGZmJvPxVDkdP1xLfsX137xBCuIcPth+jqr6Z7w13ndY4uPHMzrN9PdZTJggJIa7E10MO0+JCGZjY0exyvsFjgjwuLIDr+sSwYEsB9U0yFFEIcXnWHS7jcHE1d7rIkMMzeUyQA3xveDLltU18JEMRhRCX6bX1R4gI8mWKiww5PJNHBXlmSjg9YzrwLxmKKIS4DMaQwyJuzUzE38c1hhyeyaOCXCnFXSOSOXCySraCE0Jcsn9vPIJNKZdYV+VcPCrIAab1jyMs0IfX1h8xuxQhhAXUNjazcEshE/rGEBPqOkMOz+RxQe7v48WMwYks21fEsfI6s8sRQri4D7Yfo7K+mbuGJ5tdynl5XJAD3D7MeHn0urTKhRAXYLdr5q7No29cCIOSXGvI4Zk8MsjjwgKYlNaZtzcVUFXfZHY5QggXtfJgMbklNdw7qovLDTk8k0cGOcA9I1OoamjmnayjZpdiDq2hpQkaqqCmFKpLoKYMak9BXTk0VIPdbnaVQpjq1TV5dA71Z1Ka6w05PJPDU/Stql9CGJnJ4cxbm8edw5Lw9nKD57S6cijPh8oTUHkMqk4Y79edgrrTrUc5NFRCcz3oSwhqnyDwbT0CwiAoqvWINN6GxkNYIoQmGp9z4VaLEJdjz7EKNuSW8djEnvi4eD54bJAD3DMqhdn/3srne08yJT3W7HIujd0Op3Kh5ACUZUPZYSjLgdJsqC395mOVDYJjIDDCCOHIVMYcXQkBvqzqfx94+4G3P3j5GQGstRHuugXszdBYC43VxtFQDfXlUF0ERXuhpgRaGr95Pe8A6JgMUT0gqidE9zTehncFb3P3NBTicr26JpcgX2OdJlfn0UF+Ta9OJEcE8sqaPCandXa9PrCWZiOsT+yE4zuMtyd3GcH6taBoiOgGPScZbzsmQ0g8hHQ2vuZ11q/4tTHG27G/dqw2raG+AiqOQnkBVBQab8tyjDr3fQS0TrpSXhDZHWIHQtxAiBsEnfpKuAuXdaKijk93neCOYcmEBviYXc5FeXSQe9kUd49M4Tcf7WVr/mkyksPNLaipDo5mQcEGyF8PR7f8N7S9AyAmDfrdCp37QafeRnD7m7RfoFJGKz8gDGL6fvvrTXVQms2YRbdCYy2rwpIgexnsfMv4upcvxKQboZ48ApJGQlBEe/4LhDiv19Yfwa41d41INruUS+LRQQ5w06B4/rr8EK+syW3/IG9ugMJNkPOlEdzHtoG9CVAQ3Rv6zYD4wUZwR3T/duvalfkEQOf01v50YNY7Riu+ohCObTX+rce2wfZ/w+aXje+J7gPJI40jaYQEuzBFdUMzb20qYGLfziSEW2PJawslQ9sI9PVm1pBEXlyVQ35ZDUkRQW13Ma2NvuycL43jyBpoqmWMqgXfYFYNux8Sh0PiEAhw3TGrV0wp48ZoWCL0+Y7xuZYmOL7d+FnkrTkj2BXEDoDu46H7tcb7Ntdb40K4n3ezCqmqb+aeUSlml3LJPD7IAe4clswrq/OYtzaPJ6ado5vAES1NkL8ODnwGB5dARet66OFdoP8s6HYNrPujEVLjn3Tuta3AywcSMo1j1MPQ3GgEe95XkL0cVj8LX/0ZAsKNn1X3a41wd8cnOmG6Frtm3ro8MpI6MsDF1hy/EAlyIDrEn6n9Y3kn6ygPjU8lLNDBm3AN1ZDzBRxYDIc+N24KevtDl6th5IPQdSyEn/Fsv+HPjl3PnXj7Gq9IEofAVY8Y49pzvjRC/fAK2P0u2LwheRT0uh56ToYOMWZXLdzE0r0nKTxVx+OTepldymWRIG9198gU3tt6lDc3FXDf1d0u/wT1FbD/E9j3MeSugpYGo9XYY7IRNl2vNsZii8sTGA5pNxuH3W601g+0/pwX/wwWPwwJQ4xQ7zXFGLUjxBV6ZU0uSRGBjO9trcaBBHmrXp1DGNU9ktfXH+HeUV3w9b6ECQDNjUbLe9dCo9ukud7o/x18txHeCUOtdYPS1dlsED/IOK75nTGWfv8nsP9jWPa4ccSkG6Hf9yZjspIQl2hr/mm2F5TzxNQ+eNlcbCjyRUjKnOGeUV24c95mPt55nJsHnScEtDaGCO5aCHveN2ZNBkbAwDsgfYYxTtrVxqO7I6UgupdxXPUInMpjzPxr4fRuVi3fBct/a9w4TrsZet8gI2DERb2yOpfQAB9uybBeA0CC/Ayju0cSG+rPL9/fxc/f3UlcWAC/uK4HNwyIMya67HrHCPDTeUafd49JxhDBrmONm3bCPOEpEBJnHNfPhT2LjP70xT+DJY8Yv6O0W4zfmV+w2dUKF3O4uJql+07y4zFdCfRtg1jU2hhuu/NtuOpRCI5y6uklyM/w0Y7jlFQ30Gw3ZiTWlhex+4NPGL16K+GndwIKUkbD6F8YfbL+IeYWLM4toitc9QsY/XMo2gO73zNePS2615hY1WMipE+HrtfI7FIBwJzVOfh62bhrhJOHHJYXGo2/nQuMWdpefsaoq9TrnHoZCfIzPLv0ILaWBibbtnGD11rG2Hbio1rILk8mfPyT0PdmCI0zu0xxqZQyZsPGpBl96oWbYM97sPcD2LvIGNLY90ZI/64x8Uq6xDzSiYo6Pth+jJmZiUQG+zl+woYq497NjrfgyFpAG918w++H3tOM2dBO5pQgV0pNAP4OeAGvaq2fdsZ5243dDkfW8ED135jot5kOqo6TuiNzWybyYctIDupE8kZMNrtK4QibDZKGGceEp40hjbsWwvb5sOVV6JhitNLTpkPkFYxaEpb16po87Nq4R3bF7C3G3IedC4wQb6o1/qbGPGb8XYW37eQih4NcKeUFvACMB44CW5RSH2ut9zl67jZXtNf4z7z7Pag8xmTvABY3Z/KBfSSb7L2wty7XHhcWYHKhwqm8fIyXtqnXQX0lHPjU+Dv46hlj8lHcIKOV3udGp/dlCtdyuqaRtzcXMLVf7JVNxy/eb/R773rHWDbaP9T42+l3qzHJrZ1e5TmjRZ4JHNZa5wIopRYA0wDXDPLK40Zw71po9J/avKHbOLj2Kb6s68fvPj5Mnb3lPw/387bxi+t6mFiwaFP+IdB/pnFUHjf60nctNG6Qfv6YMZs0/bvGTVJfa6y7IS7dGxvyqW1s4YdXdb30b6ouMbrodr5trPRp84Zu441XeqkTwKf9N2h2RpDHAYVnfHwUGHL2g5RSs4HZAImJ7by+79d9VjsXQN5qQENcBkx81ugjDYoE4HqgxTuAZ5ce5Fh5HQpjfPkNA6Rf3COExBr9mMPvh6J9sPsd40n//bvBN9i4wZ0+HVKuknVf3EBtYzOvrc9jXK9oesR0uPCDm+rh0BIjQ7KXG2v2d+4PE/5szFkw+ZWbM4L8XK8d9Lc+ofUcYA5ARkbGt77udC1N/+0HPfAZNNcZs/6uesRoYUWc+xn4hgFx/wnup5ccYM7qHPJKa0iJlFmZHqVTb+j0exj7W2NZ4V0LYe+HRissOMYYn54+3ZiAJDdJLWnB5kJO1zbxozHnaY1rbdwg3/k27PkAGiqgQ+uTfb8ZxhwGF+GMID8KJJzxcTxw3AnnvXxaG0uk7nrHeIlcW2pMkx8w64pGJnx/ZDLz1uUxZ3UOf7oxvQ0LFy7LZjPWS08eAROfMdZU37UQNr0MG543dkBKu8U4OiaZXa24RI3Ndl5Zk0tmSjiDks5avrrkoJEhu981tk70CYReU43wThntkq/GnBHkW4DuSqkU4BgwA5jphPNeuuIDxg99z3tw+ogxVrPHRCO8u4274rHC0R38uWVQPO9mHeXBcal0Cmn/vi/hQnz8ofdU46g9xZi5w6Eqm1VfPgVfPmUMMUufDn1ukNUZXdSH24/9p+sU4Pp+rVs8Vp4w8mPXO8YuXMoGXcYYo056Xe/yk8gcDnKtdbNS6ifAUozhh/O01nsdruxiyguNVvfu96Bot/GDT7kKRj9iLJ7kpJ1zZo/uwtubC5i3No/HLLYimmhDgeHGqosdYmDa60ZDYtdC+PRB40Zp92uNhkTqdcbeqMJ0H24/xmOLdlPXZAxm6EAt1Rteozh3B9GlmwBtbEc44WljxFKHTuYWfBmcMo5ca/0Z8JkzznVBNWWw70MjvAvWG5+LyzBuOPT5Tpv84JMigpiSHsv8jfn8eEw3QgNlKr44S8ckYxbpqIeNUQxfvyw/8KnRoOh9gxHqicOMrhphimeXHsSrqYpptm1M8trMGNtO/FQTR8tijHtnFp5DYK2ZncseN248RPaAq38NaTcZGzS0sR9e1ZWPdx7n9Q1H+Ok13dv8esKilILY/sYx/kljgsiu1pEv216H0ASjLz19ukvdKHN79RVwcAm/r5nDaL9d+KkmTuqOvNUylo9aRrBTdyXv6ilmV+kQawX5yIdg2H3GDuztOFKgd2wI1/SMZu7aPL4/MoVgP2v92IQJvLyNMejdroHG54yRU7sWwrq/w9rnjD1Ye04yxqfHD3bJG2iWVlMKh5YaSxznfAktjaR7RTC/eRyLW4awXXdDu9GEP2slUpR5E3N+ek13pr2wjtfXH7myjSeE5/INgvRbjKO62BjGePAz2PCCEeyBkcZEkh4TZQOSK6W1Mcvy0BI4+Dkc3QJo41VQ5mzofQPrizvxP+/tRp8x+DnAx8stJvxZK8hN1C8hjDE9onh1TS7fG55MkLTKxZUIjoYhs42jvsLYvu7gktZFluYbyyOnjDaW3e1ytdF4kXHq51ZfaeyHm/Ol0fouzzc+37k/jPml8eTYud9/fn6R9SVoDWEBPlTUNRF75jLVFidpdBl+ek13bnxxPfM35vODy5nSK8S5+IcaswL73tS6Sfd6I9Szlxrj1cGYgNJlTGuwX2U8EXiqliZjU5fcVZC70nhftxhLE3e5yuh6TZ0AIZ2/9a1aa/6+IpvOof6s+sUY/LzdqytLgvwyDEzsyKjukcxZncvtw5LaZgF64Zm8fIww6nIVTHwaTucbYZWz0uiG2fmW8bjwrsbol8QhxlaCkd3dt8VeV26EdeEmKNwIR7dCU40x1Dh2gLGReZerjcWpLjLEc0NOGVn5p3lyWh+3C3GQIL9sD47rzk3/3MBbmwocW/ZSiAvpmASDvmcc9hbGvJIJ9RWsikw1gn3HfONxAeHG5tOx/f+79npogvXCvaEaivfByd3GEM7CzcaerGgjuDv1NRY2SxkNKaMue8LV37/IplOIH9MzEi7+YAuSIL9Mg5LCGdEtgpe+ymXWkCQCfN3v2V24GJsX+HUwjpkLjBt7pdnGGjCFm4zQO/Q5/1niyD+sNdTTjXHR4V2MlnxInPnj2Osr4FSesV1i6WFjMt/JPXAql//U7xcKCYONBe0SMo25Ig7MrNyYW8amvFP87vre+Pu45/9XCfIr8MA1qUx/eQNvby7g+yPbdsF4Ib5FKYhKNY5Bdxqfa6wxVmw8uav12A1Zc6G5/r/f5+VnLBwX0dVY6TE4xphE16EzBEUZffb+oeAXYgyfvFRaGxspNFQZNyBriqG6CKqKjLeVx42gPp0HtWXf/N6OydCpL2Ps5eAbxKpbP4WwRKe+ovjHF9lEdfDj1sx2XnW1HUmQX4HMlHCGdgnnpa9ymDkk0W2f5YWF+AYZrdiEwf/9nN0OVa0hWpZjvD2Va7SICzZA3ekLnC8YfALA5mP033v5Gutu25u/eTTVGQGuW859HpuP8UQRngw9pxg75YR3MXbPCU8xXmUAvDbGeOvkhce2HDnF+pwyfj25l1v/P5Ugv0IPXJPKra9sZOGWQu4cnmx2OUJ8m80GofHGkTL6219vqjdazNVFxvj2hkqj66O+gjHbXgRdz6pu1xmjRVqawN5khLnNuzXgvY3hkn4h/+368Qsx1uYO7mQc/mGmduf844tsIoP9mDXEvVemlCC/QkO7hJOZHM4/V+UwIzPBLe+ECzfn42+0gM/VCj7yufF22gvtW5MTbc0/zZrsUh6f1Mvt72XJCj5XSCnFA+O6c7Kynne2FF78G4QQ7eofX2QTEeTLrKHu2zf+NQlyBwzvGkFGUkeeX3mY+qbz9BEKIdpd1pFTfHWohHtHd/GI+R4S5A5QSvHz63pQVNnA/I35ZpcjhGj112WHiAz2445h7t03/jUJcgcN7RLBqO6RvLgqh+qGZrPLEcLjrTtcyobcMn5ydVePaI2DBLlT/PzaHpyqaWTe2jyzSxHCo2mt+cuyg8SG+nPrEPfvG/+aBLkT9EsI49renXhldS7ltY1mlyOEx/ryQDHbC8r56TXdPWokmQS5kzx8bQ+qG5t56atcs0sRwiPZ7Zq/LjtEUkQgNw2KN7ucdiVB7iQ9YjowrV8sr63Po7iy/uLfIIRwqiV7TrLvRCUPjUvFx8uzos2z/rVt7MFxqTS1aF5YedjsUoTwKC12zXPLD9I9Opjr+8WaXU67kyB3ouTIIKZnJPDW5gKOnq41uxwhPMaH24+RU1LDw9em4mWz2BK+TiBB7mQ/vaYbSin+viLb7FKE8Aj1TS08t/wQaXGhXNcnxuxyTOFQkCulnlVKHVBK7VJKfaCUCnNSXZbVOTSA24cm8f62o+SUVJtdjhBub/7GfI6V1/HLiT1RVttQw0kcbZEvB/pqrdOBQ8BjjpdkfT8a0xV/Hy+eW3bI7FKEcGuV9U08v/Iwo7pHMqJbpNnlmMahINdaL9Nafz2dcSPgWWN+ziMy2I97RnVh8e4TbC+4wJrPQgiHvPxVDuW1TTw6oafZpZjKmX3k3weWnO+LSqnZSqkspVRWSUmJEy/rmmaP7kJksC9/WnIArbXZ5Qjhdooq65m7No9p/WPpGxdqdjmmumiQK6VWKKX2nOOYdsZjHgeagTfPdx6t9RytdYbWOiMqKso51buwYD9vHhiXyua8U3x5oNjscoRwO39bcYgWu+bh8T3MLsV0F11RRms97kJfV0rdCUwBrtHS9PyGGYMT+NfaPJ5ecoCrUqPw9rBJCkK0lcPF1SzcUsgdw5JJjAg0uxzTOTpqZQLwKDBVay0Dp8/i42XjkQk9yS6u5r2tR80uRwi38ezSAwT6enP/2G5ml+ISHG0iPg90AJYrpXYopV5yQk1u5bo+nRiU1JHnlh+itlGWuRXCUVlHTrF0bxGzR3chItjP7HJcgqOjVrpprRO01v1bjx86qzB3oZTiV5N6UlzVwNw1ssytEI6w2zVPLd5PTIg/94xKMbsclyGdtu1gUFI4E/rE8NJXOZRUNZhdjhCW9fHO4+wsLOcX1/XwmE0jLoUEeTt5ZEIPGprt/O8KmSQkxJWoa2zhz58foG9cCN8ZEGd2OS5FgryddIkK5vZhSSzYXMD+E5VmlyOE5cxdm8uJinp+Pbk3Ng9cGOtCJMjb0YPXpBIS4MOTn+yTSUJCXIbiqnpeXJXDdX06MbRLhNnluBwJ8nYUGujDz8ansiG3jGX7iswuRwjLeG7ZIZpa7Dw2sZfZpbgkCfJ2NjMzke7Rwfzxs/00NLeYXY4QLm/f8UoWZhVy57BkkiODzC7HJUmQtzNvLxu/mdKb/LJaXl9/xOxyhHBpWmue+nQfoQE+3D+2u9nluCwJchOMTo1ibM9o/u+Lw5RWy3BEIc7ns90n2ZBbxsPjUwkN9DG7HJclQW6Sxyf3oq6phb8uO2h2KUK4pLrGFv6weB+9Oocwc0iS2eW4NAlyk3SNCubO4cks2FJITYNM3RfibP9cdZjjFfU8MbWPR+7DeTkkyE30wLjuRAT5kVdaY3YpQriUgrJaXlqdy7T+sWSmhJtdjsuTIDdRiL8Pj03sSXVDs0zdF+IMTy3eh7dNyXDDSySLFZjsxoFxXL/lZXJKaiivbSQs0NfskoQw1VeHSli+r4hHJ/QkJtTf7HIsQVrkJlNK8cTUvpTXNvJX2axZeLjGZjtPfLyXlMggvj8y2exyLEOC3AX0jg3hjmHJvLkpnz3HKswuRwjTvLo2l9zSGn47pTd+3l5ml2MZEuQu4qHxqYQH+fLbj/Zgt8s6LMLzNDTb+ccX2UzoE8PVPaPNLsdSJMhdRGiAD49O6Mm2gnLZFk54pLzSGryU4ndTe5tdiuVIkLuQmwbGk5HUkT8u2U+ZzPgUHuRUTSPltY08ND6VzqEBZpdjORLkLsRmU/zxxjRqGpr5w+L9ZpcjRLuobmjmSFkNgb7efG94stnlWJIEuYtJ7dSBH4zuyqLtx1h3uNTscoRoc/+7/BARdX/kizu+xNtLIulKyE/NBf1kbDeSIwJ5/IPd1DfJUrfCfe05VsG/1uUxMzORAYkdzS7HsiTIXZC/jxd/+E4aR8pqef7Lw2aXI0SbaLFrHv9wD+FBvjwyoafZ5ViaBLmLGtEtkhsHxPHy6hwOFVWZXY4QTvevdXnsLCznN1N6ExogS9Q6wilBrpT6uVJKK6UinXE+YXh8ci+C/bz51aLdMrZcuJWCslr+suwg43pFM7VfrNnlWJ7DQa6USgDGAwWOlyPOFBHsx68m9SIr/zT/3phvdjlCOIXWml8u2oWPzcZTN/RFKVmi1lHOaJH/L/AIIE3GNnDzoHhGp0bx588PUHiq1uxyhHDYwi2FrM8p47FJvWTMuJM4FORKqanAMa31zkt47GylVJZSKqukpMSRy3oUpRR/ujENm1I8+v4utJbnS2FdJyvq+cPi/QzrEsGtmQlml+M2LhrkSqkVSqk95zimAY8Dv72UC2mt52itM7TWGVFRUY7W7VHiwgL41aRerM8p463N0oMlrElrza8/3EOT3c6fbkyTLhUnuuh65Frrcef6vFIqDUgBdrb+QuKBbUqpTK31SadWKbg1M4HFu4/zp88OMKZHNHFh8pJUWMsnu06wYn8Rj0/qRXJkkNnluJUr7lrRWu/WWkdrrZO11snAUWCghHjbUErx9I3p2LXml9LFIiymuLKe3360h/4JYdw1ItnsctyOjCO3kITwQH45sSdrskt5N0tWSBTWoLXm0fd3Ud/Uwl+n95Np+G3AaT/R1pa5LA7Sxm4bksSQlHCe/HSfjGIRlrBwSyErD5bw6ISedI0KNrsctyRPjRZjsyn+Or0fAA+/s5MWmSgkXFjhqVqe+nQfw7pEcOewZLPLcVsS5BYU3zGQJ6b2YfORU7yyJtfscoQ4J7td8/N3d6KU4tlb0rHZZJRKW5Egt6gbB8YxsW8Mf112kH3HK80uR4hvmbcuj015p/jt9b2J7xhodjluTYLcopRS/PE7aXQM9OWhhTtkuVvhUg6erOKZpcZaKrcMije7HLcnQW5hHYN8eebmdA4WVfGXpQfNLkcIAOqbWrj/7W2E+PvwpxvTZeJPO5Agt7gxPaK5fWgSr67NY222DBoS5vufxfs4VFTNc9P7EdXBz+xyPIIEuRv41aRedI8O5sGFOyipkk2bhXmW7j3J/I0F3DsqhdGpshRHe5EgdwMBvl48P3MgVfVN/OydHbJ2uTDFiYo6Hn1/F33jQvjFdbLjT3uSIHcTPWI68Lvr+7Amu5SXV8uQRNG+WuyahxbuoLHZzj9mDMDXW6KlPclP243cmpnA5LTO/GXZQbbmnza7HOFB/rnqMBtzT/HE1D50kdmb7U6C3I0opfjTTWl0DvXnp29vp6K2yeyShAdYn1PKc8sPMbVfLDfLUENTSJC7mRB/H56fOZCiynoeeX+nrJIo2lRRZT0/fXs7XaKCZY1xE0mQu6H+CWH8cmJPlu4tkin8os00tdj5yVvbqGlo4Z+zBhLkd9HtDUQbkSB3U3ePTGFSWgxPLznA+hwZXy6c7y9LD7LlyGmevimN7p06mF2OR5Mgd1NKKZ65uR8pkUHc/9Z2TlTUmV2ScCNL957k5dW53DY0kWn948wux+NJkLuxYD9vXr59EPVNLfxo/jYammU9FuG4I6U1/PzdnaTHh/KbKb3NLkcgQe72ukV34Nlb+rGjsJz/+XS/2eUIi6uqb+KeN7LwtilemDkQP28vs0sSSJB7hElpnZk9ugv/3pgvU/jFFbO3TvrJK63hhVkDSQiXpWldhQS5h3jkuh4M7xpBXmkNVfXNZpcjLOi55YdYsb+Y307pzfCukWaXI84gQe4hvL1svDhrIL7eNg4VVcl+n+KyfLrrOM+vPMyMwQncMSzJ7HLEWSTIPUhYoC9ZP1hLsn6Ge9/IorpBWubi4vYer+Dn7+4kI6kjT07rK5N+XJAEuYfpFh3MCzMHkl1czYMLZKVEcWFFlfXc+3oWHQN9+edtg2QxLBclvxUPNDo1it9M7sWK/UU8IzsLifNosWvu+tcWKuqaeOWODNkkwoU5HORKqfuVUgeVUnuVUs84oyjR9u4cnsysIYm89FUOb27KN7sc4WK0huziag4WVfH8rIH0jQs1uyRxAQ4tjqCUuhqYBqRrrRuUUtHOKUu0NaUUv5/ah+Pldfzmwz1Ed/BnfO9OZpclXIDWmiNlNZTXNvLctL5c3UP+W7s6R1vkPwKe1lo3AGitix0vSbQXHy8bL8waSFpcKPe/vU3WMBcAvLw6F1X6e54Y/i4zhySaXY64BI4GeSowSim1SSn1lVJqsDOKEu0n0Nebud8bTKcQf+55fQs5JdVmlyRM9NGOYzy95ADX94vlF9f2MLsccYkuGuRKqRVKqT3nOKZhdM10BIYCvwDeUecZm6SUmq2UylJKZZWUlDj1HyEcExnsx+t3ZWJTijvnbaa4qt7skoQJvthfxM/e2cnQLuE8e3M6NpsMM7SKiwa51nqc1rrvOY6PgKPAIm3YDNiBc0750lrP0VpnaK0zoqJkd21XkxwZxLzvDaasupE75m6mvLbR7JJEO9qYW8aP39xGn9gQXr1zMP4+soaKlTjatfIhMBZAKZUK+AKy+LVF9UsIY84dg8gtqeHOeZupqpet4jzBrqPl3PN6Fonhgbx2VybBskGE5Tga5POALkqpPcAC4E4te4tZ2qjuUbwwayB7j1fy/de2UNsosz/dWXZRFXfO20xYoA//vnsI4UG+ZpckroBDQa61btRa39ba1TJQa/2lswoT5hnfuxP/+93+bM0/zQ/+vZX6JlnH3B3lldZw29xNeHvZePOeIcSE+ptdkrhCMrNTnNP1/WJ55uZ+rMku5SdvbaOx2W52ScKJckuqmTFnA80tmvl3DyEpIsjskoQDJMjFed08KJ6nbujLiv3F/PhNaZm7i8PF1cyYs5EWu+bt2UPpESP7bVqdBLm4oNuHJv0nzO99I4u6RglzKztcXMWtr2zEruHte4eSKpsmuwUJcnFRtw9N4pmb01l7uJS7Xtssy99aVHZRFTPmbEJrWDB7iOx870YkyMUlmZ6RwN++258tR05zx9xNVMrQREvZXnCaW17egFKwYPZQukVLiLsTCXJxyab1j+OFmQPYfayCW+dslBmgFvHVoRJmvrKJ0AAf3v/hcLpFB5tdknAyCXJxWSb07cycOzLILanhxhfXy9osLu6jHce4+7UtpEQG8e4Ph5EYIRsmuyMJcnHZru4RzYLZQ6lrbOGmf65na/4ps0sS5/DaujweWLCDQUkdWfCDoUR3kHHi7kqCXFyRfglhLPrxcMICfJj5yiaW7j1pdkmiVYtd8+Qn+/j9J/u4tncnXv9+JiH+PmaXJdqQBLm4YkkRQbz/o+H07BzCD+dv5dU1ucgKDeaqrG/i7te3MG9dHneNSObFWQNlASwPIEEuHBIR7Mfb9w7h2t6d+J/F+3n4nZ0yccgkBWW13PTietZml/LH76Txu+v74O0l/8U9gfyWhcMCfb3556xBPDQulUXbjzH95Q2cqKgzuyyPsim3jGkvrKW4qoE37s6UnX08jAS5cAqbTfHAuO7MuX0QOcXVXP9/68g6IjdB25rdrnnpqxxmvrqJjkG+fHjfCIZ3PeeWAMKNSZALp7q2Twwf3DeCYD8vZszZyPFyaZm3ldM1jdzzRhZPLznAhD4xfHTfCFIiZfErTyRBLpwutVMHPrpvJON7d6LgVC37T1RSUtVgdlluZXvBaab831rWZJfw5LQ+PD9zAB1kZIrHkiAXbSI00IcXZw1k7uRPCav5AxP/vobVh2SvVkc1t9h5YeVhprdOt3/vh8O5Y1gy59kqV3gICXLRZpRSzBqSxMc/GUnHQB/umLeZJz/ZJysoXqG6phZufmkDzy49yPjenVh8/yj6JYSZXZZwAbI5n2hzPWI68PFPRvLHz/Yzb10eK/YX8fRNaXJT7hLZ7ZqTFfUUnKql3lbDP24dwPXpnaUVLv5DWuSiXQT4evHUDX15+96hKAUzX9nEY4t2yyqKF3GoqIoZr2yk/sRvmJEyl+UPjWZqv1gJcfEN0iIX7WpY1wg+f2A0zy0/yNy1eaw8UMxjk3pKOJ2luqGZv684xL/WHSHIz5tnbkrnlox4+RmJc5IgF+0uwNeLxyf3ZnJ6LL9atJsHFuzgjQ35/HZKb4/v89Va88muE/xh8T6KKhuYMTiBRyb0lN3txQVJkAvT9E8I45P7R/Le1kKeXXqQaS+s46aB8TwyoQedQjxvpb4NOWU8u/QA2wrKSYsL5aXbBjEgsaPZZQkLkCAXpvKyKb47OJFJaZ15/svDzFuXx6e7jnNrZiI/GtPVIwJ9R2E5f1l6kLWHS4kJ8edPN6YxPSMBL5t0o4hLI0EuXEIHfx8em9SLWUOS+L8vs/n3xnze2lzAzMxEfnhVV2JC3SvQtdZsKzjNP1flsmJ/EeFBvvx6ci9uG5okqxWKy+ZQkCul+gMvAf5AM/BjrfVmJ9QlPFRiRCDP3tKP+8d254WVh5nfGujXp8dyx7Aky/ehN7fYWbLnJK+uzWNnYTmhAT48PD6Vu0amEOwn7SpxZRz9y3kGeEJrvUQpNan14zEOVyU8XmJEIH++OZ2fjO3GnNW5LNp2lPe3HaVffCi3D0tmSnpnS7VcT1bU8/62o7y1qYBj5XWkRAbx1LQ+3DQonkBfCXDhGEf/gjQQ0vp+KHDcwfMJ8Q0J4YE8dUNfHpnQgw+2H+ONDfn8/N2dPPnJXialdWZq/1iGpkRgc8H+5Kr6Jr48UMyibcdYk12CXcPQLuE8MbUPY3tGu2TNwpocDfIHgaVKqb9gTC4afr4HKqVmA7MBEhNlrWRxeTr4+3DHsGRuH5rEhtwy3ss6yic7j7NgSyHRHfy4plc0p2sbCQ0wd+GoExV1rDlUyrJ9J1mdXUpjs53YUH/uu7obNw2MJ1lWJxRt4KJBrpRaAcSc40uPA9cAD2mt31dKTQfmAuPOdR6t9RxgDkBGRobsByauiFKK4V0jGd41krrGFlbsL2LJnhN8svMEh3UVNqWY/vIGhqaEk5kSQVpcKKGBbRfuDc12PtpxjO0F5aw7XEp2cTUAnUP9uW1IEpPSYhiY2FFa36JNKUf2WFRKVQBhWmutjClnFVrrkIt9X0ZGhs7Kyrri6wpxtsZmO5vzTvHVoWI25Z1iz7EK7K1/2gnhAfTpHEqXqCCSI4JIiggkOsSfyGBfgv28Lzhb0m7XVNU3c6KyjuPldRw7XUdOSQ0HT1bx6Ykf0NRiJ6bxaQJ8vBiU1JHRqZGMTo2iR6cOMgtTOJ1SaqvWOuPszzvatXIcuApYBYwFsh08nxBXxNfbxsjukYzsbizEVVnfxI6CcvYer2TP8Qr2H69kxf4imu3fbLj4edsI8vMmwMcLPx8baGi2a1rsmqr6Jqoamjm7rRPk60X3Th34UZ83SIsLZUBiR3rGdJD9MYVpHA3ye4G/K6W8gXpa+8CFMFuIvw+jU6MYnRr1n881t9g5Vl5HwalaSqoaKKlqoKymkdrGZuoa7dQ3t2BTCi8FXjYbHfy9CfH3JiTAh04h/sR1DCAuLIDoDn7S2hYuxaEg11qvBQY5qRYh2pS3l42kiCCSIuSGo3Av8lpQCCEsToJcCCEsToJcCCEsToJcCCEsToJcCCEsToJcCCEsToJcCCEsToJcCCEszqG1Vq74okqVAPlX+O2RQKkTy2lrVqrXSrWCteq1Uq1grXqtVCs4Vm+S1jrq7E+aEuSOUEplnWvRGFdlpXqtVCtYq14r1QrWqtdKtULb1CtdK0IIYXES5EIIYXFWDPI5ZhdwmaxUr5VqBWvVa6VawVr1WqlWaIN6LddHLoQQ4pus2CIXQghxBglyIYSwOEsGuVLqWaXUAaXULqXUB0qpMLNrOh+l1C1Kqb1KKbtSymWHSCmlJiilDiqlDiulfml2PReilJqnlCpWSu0xu5aLUUolKKVWKqX2t/4dPGB2TeejlPJXSm1WSu1srfUJs2u6GKWUl1Jqu1LqU7NruRil1BGl1G6l1A6llFM3LbZkkAPLgb5a63TgEPCYyfVcyB7gRmC12YWcj1LKC3gBmAj0Bm5VSvU2t6oLeg2YYHYRl6gZeFhr3QsYCtznwj/bBmCs1rof0B+YoJQaam5JF/UAsN/sIi7D1Vrr/jKOHNBaL9NaN7d+uBGIN7OeC9Fa79daHzS7jovIBA5rrXO11o3AAmCayTWdl9Z6NXDK7Douhdb6hNZ6W+v7VRihE2duVeemDdWtH/q0Hi47GkIpFQ9MBl41uxazWTLIz/J9YInZRVhcHFB4xsdHcdGwsTKlVDIwANhkcinn1dpVsQMoBpZrrV22VuBvwCOA3eQ6LpUGlimltiqlnLpRvUObL7clpdQKIOYcX3pca/1R62Mex3jp+mZ71na2S6nVxZ1rS3iXbYlZkVIqGHgfeFBrXWl2PeejtW4B+rfed/pAKdVXa+1y9yKUUlOAYq31VqXUGJPLuVQjtNbHlVLRwHKl1IHWV5cOc9kg11qPu9DXlVJ3AlOAa7TJg+EvVqsFHAUSzvg4HjhuUi1uRynlgxHib2qtF5ldz6XQWpcrpVZh3ItwuSAHRgBTlVKTAH8gRCk1X2t9m8l1nZfW+njr22Kl1AcYXZpOCXJLdq0opSYAjwJTtda1ZtfjBrYA3ZVSKUopX2AG8LHJNbkFpZQC5gL7tdbPmV3PhSilor4eAaaUCgDGAQdMLeo8tNaPaa3jtdbJGH+vX7pyiCulgpRSHb5+H7gWJz5BWjLIgeeBDhgvT3YopV4yu6DzUUp9Ryl1FBgGLFZKLTW7prO13jj+CbAU42bcO1rrveZWdX5KqbeBDUAPpdRRpdTdZtd0ASOA24GxrX+rO1pbka6oM7BSKbUL48l9udba5Yf1WUQnYK1SaiewGVistf7cWSeXKfpCCGFxVm2RCyGEaCVBLoQQFidBLoQQFidBLoQQFidBLoQQFidBLoQQFidBLoQQFvf/R7Hm5OH6Sj0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# generujemy wektor wartości x\n", + "x=np.linspace(-2,5,200)\n", + "\n", + "# obliczamy wartości f(x) i g(x) dla wygenerowanego zakresu x\n", + "# ale najpierw zdefiniujmy je sobie jako \"prawdziwe\" Pythonowe funkcje\n", + "\n", + "def fun_f(x):\n", + " return x**2-3*x-6\n", + "\n", + "def fun_g(x):\n", + " return np.cos(x)\n", + "\n", + "\n", + "# teraz zamiast wpisywać wzór - możemy posługiwać się \"nazwą\" naszej funkcji\n", + "y1 = fun_f(x)\n", + "y2 = fun_g(x)\n", + "\n", + "# rysujemy wyresy obu funkcji\n", + "plt.figure()\n", + "plt.plot(x, y1)\n", + "plt.plot(x, y2)\n", + "\n", + "\n", + "# # eksperymentujemy z zakresem x - tak aby dobrze widoczne były punkty przecięcia\n", + "\n", + "# # jak już je znajdziemy - wpisujemy je do poniższej zmiennej\n", + "\n", + "# # zaznaczcie \"kropkami\" punkty przecięcia tych wykresów\n", + "zakres = np.array( [-1.4,4.3] )\n", + "\n", + "\n", + "# # rysujemy wykres punktowy\n", + "plt.scatter(zakres, fun_f(zakres)) # obojętne której funkcji użyjemy - dla tych punktów powinny być sobie \"prawie\" równe\n", + "\n", + "\n", + "# # jak już oszacujecie zakres wartości x dla których warunek jest prawdziwy, to możecie go na wykresie \"zakreskować\" stosując\n", + "# # poniższą sztuczkę\n", + "\n", + "# # generujemy wektor xx dla wartości z wcześniej oszacowanego zakresu. Nie generujemy zbyt wielu elementów\n", + "xx = np.linspace(zakres[0], zakres[1], 10)\n", + "\n", + "# # do y_min wstawiamy wartości funkcji z leżącej \"niżej\" (dla wartości z zakresu - czyli dla xx)\n", + "y_min = fun_f(xx)\n", + "\n", + "# # do y_max wstawiamy wartości funkcji z leżącej \"wyżej\"\n", + "y_max = fun_g(xx)\n", + "\n", + "# # rysujemy pionowe kreseczki\n", + "plt.vlines(xx, y_min, y_max, color='g')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## Wykresy słupkowe i histogramy\n", + "\n", + "Tablica oceny zawiera stopnie Waszych starszych kolegów z kursu Podstawy Programowania (TEL 2020). Kolumna pierwsza zawiera ocenę z wykładu, kolumna druga - z laboratorium.\n", + "\n", + "Proszę narysować histogramy ocen z wykładu i z laboratorium. UWAGA - proszę przeczytać dokumentację funkcji ```np.hist``` i zwrócić szczególną uwagę na parametr ```bins```" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([33., 16., 24., 18., 5., 2., 3.]),\n", + " array([2. , 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. ]),\n", + " )" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAN80lEQVR4nO3df6hk9X3G8fcTd0OCWlT2ahd/5LZBQm3AVS5bw4LYmASjpSbQQITaJVg2LVqUBsrWP9rkvy00JrQU20202VJNkahV1KSRrSEEUtO7duOPrqki22Tj1r0mGLUtDeqnf9yz4TLO3Zl7Z+bOfOP7BcOcOec79zx8GR+OZ+acTVUhSWrP26YdQJK0Pha4JDXKApekRlngktQoC1ySGrVpI3e2ZcuWmp+f38hdSlLzDhw48GJVzfWu39ACn5+fZ3FxcSN3KUnNS/Kf/dZ7CkWSGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhq1oVdijmJ+94PTjtCUw3uumnYESRPmEbgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJatTAAk/yjiTfSfLdJE8l+Uy3/owkDyd5pns+ffJxJUnHDXME/n/A+6vqQmAbcEWSS4DdwP6qOh/Y372WJG2QgQVey17tXm7uHgVcDezr1u8DPjKJgJKk/oY6B57kpCQHgWPAw1X1KHBWVR0F6J7PnFhKSdKbDFXgVfV6VW0DzgG2J3nvsDtIsivJYpLFpaWldcaUJPVa069Qquol4BvAFcALSbYCdM/HVnnP3qpaqKqFubm50dJKkn5mmF+hzCU5rVt+J/AB4GngfmBnN2wncN+EMkqS+hjmX6XfCuxLchLLhX9XVT2Q5NvAXUmuA74PfGyCOSVJPQYWeFU9DlzUZ/2PgMsnEUqSNJhXYkpSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUqIEFnuTcJI8kOZTkqSQ3dus/neSHSQ52jysnH1eSdNymIca8Bnyqqh5LcipwIMnD3bbPVdWfTy6eJGk1Awu8qo4CR7vlV5IcAs6edDBJ0omt6Rx4knngIuDRbtUNSR5PcnuS01d5z64ki0kWl5aWRksrSfqZoQs8ySnA3cBNVfUycCvwbmAby0fon+33vqraW1ULVbUwNzc3emJJEjBkgSfZzHJ531FV9wBU1QtV9XpVvQF8Adg+uZiSpF7D/AolwG3Aoaq6ZcX6rSuGfRR4cvzxJEmrGeZXKDuAa4Enkhzs1t0MXJNkG1DAYeCTE8gnSVrFML9C+RaQPpseGn8cSdKwhjkCl8ZmfveD047Q1+E9V007grRmXkovSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1KiBBZ7k3CSPJDmU5KkkN3brz0jycJJnuufTJx9XknTcMEfgrwGfqqpfAS4Brk9yAbAb2F9V5wP7u9eSpA0ysMCr6mhVPdYtvwIcAs4Grgb2dcP2AR+ZUEZJUh9rOgeeZB64CHgUOKuqjsJyyQNnrvKeXUkWkywuLS2NGFeSdNzQBZ7kFOBu4KaqennY91XV3qpaqKqFubm59WSUJPUxVIEn2cxyed9RVfd0q19IsrXbvhU4NpmIkqR+hvkVSoDbgENVdcuKTfcDO7vlncB9448nSVrNpiHG7ACuBZ5IcrBbdzOwB7gryXXA94GPTSShJKmvgQVeVd8Cssrmy8cbR5I0LK/ElKRGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpUcNcyCP93Jvf/eC0I/R1eM9V046gGeYRuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CjvhfJzalbv7SFpfDwCl6RGWeCS1CgLXJIaNbDAk9ye5FiSJ1es+3SSHyY52D2unGxMSVKvYY7AvwRc0Wf956pqW/d4aLyxJEmDDCzwqvom8OMNyCJJWoNRzoHfkOTx7hTL6asNSrIryWKSxaWlpRF2J0laab0FfivwbmAbcBT47GoDq2pvVS1U1cLc3Nw6dydJ6rWuAq+qF6rq9ap6A/gCsH28sSRJg6yrwJNsXfHyo8CTq42VJE3GwEvpk3wZuAzYkuQI8KfAZUm2AQUcBj45uYiSpH4GFnhVXdNn9W0TyCJJWgOvxJSkRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY0aWOBJbk9yLMmTK9adkeThJM90z6dPNqYkqdcwR+BfAq7oWbcb2F9V5wP7u9eSpA00sMCr6pvAj3tWXw3s65b3AR8ZbyxJ0iDrPQd+VlUdBeiez1xtYJJdSRaTLC4tLa1zd5KkXhP/ErOq9lbVQlUtzM3NTXp3kvSWsd4CfyHJVoDu+dj4IkmShrHeAr8f2Nkt7wTuG08cSdKwhvkZ4ZeBbwPvSXIkyXXAHuCDSZ4BPti9liRtoE2DBlTVNatsunzMWSRJa+CVmJLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVGbRnlzksPAK8DrwGtVtTCOUJKkwUYq8M6vV9WLY/g7kqQ18BSKJDVq1CPwAr6epIC/qaq9vQOS7AJ2AZx33nkj7k56a5nf/eC0I/R1eM9V044gRj8C31FVFwMfBq5PcmnvgKraW1ULVbUwNzc34u4kSceNVOBV9Xz3fAy4F9g+jlCSpMHWXeBJTk5y6vFl4EPAk+MKJkk6sVHOgZ8F3Jvk+N+5s6q+NpZUkqSB1l3gVfUccOEYs0iS1sCfEUpSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1Khx3E5WkmbCrN78CyZzAzCPwCWpURa4JDXKApekRlngktQoC1ySGuWvUCSt2Sz/2uOtxCNwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElq1EgFnuSKJN9L8myS3eMKJUkabN0FnuQk4K+ADwMXANckuWBcwSRJJzbKEfh24Nmqeq6qfgr8A3D1eGJJkgYZ5WZWZwM/WPH6CPBrvYOS7AJ2dS9fTfK9de5vC/DiOt87SeZaG3OtjbnWZlZzkT8bKdu7+q0cpcDTZ129aUXVXmDvCPtZ3lmyWFULo/6dcTPX2phrbcy1NrOaCyaTbZRTKEeAc1e8Pgd4frQ4kqRhjVLg/wqcn+SXkrwd+Dhw/3hiSZIGWfcplKp6LckNwD8BJwG3V9VTY0v2ZiOfhpkQc62NudbGXGszq7lgAtlS9abT1pKkBnglpiQ1ygKXpEbNVIEnOTfJI0kOJXkqyY19xiTJX3SX7z+e5OIZyXVZkp8kOdg9/mQDcr0jyXeSfLfL9Zk+Y6YxX8Pk2vD5WrHvk5L8W5IH+mzb8PkaMtdU5ivJ4SRPdPtc7LN9KvM1RK5pzddpSb6S5OmuL97Xs32881VVM/MAtgIXd8unAv8BXNAz5krgqyz/Dv0S4NEZyXUZ8MAGz1eAU7rlzcCjwCUzMF/D5Nrw+Vqx7z8E7uy3/2nM15C5pjJfwGFgywm2T2W+hsg1rfnaB/xut/x24LRJztdMHYFX1dGqeqxbfgU4xPIVnytdDfxdLfsX4LQkW2cg14br5uDV7uXm7tH7rfQ05muYXFOR5BzgKuCLqwzZ8PkaMtesmsp8zaIkvwBcCtwGUFU/raqXeoaNdb5mqsBXSjIPXMTy0dtK/S7h37AyPUEugPd1pw2+muRXNyjPSUkOAseAh6tqJuZriFwwhfkCPg/8EfDGKtun9fn6PCfOBdOZrwK+nuRAlm+L0Wta8zUoF2z8fP0ysAT8bXcq7ItJTu4ZM9b5mskCT3IKcDdwU1W93Lu5z1s25OhuQK7HgHdV1YXAXwL/uBGZqur1qtrG8pWw25O8t2fIVOZriFwbPl9JfgM4VlUHTjSsz7qJzteQuaby+QJ2VNXFLN919Pokl/Zsn9Z/j4NyTWO+NgEXA7dW1UXAfwO9t9ke63zNXIEn2cxySd5RVff0GTKVS/gH5aqql4+fNqiqh4DNSbZMOteK/b8EfAO4omfTVG95sFquKc3XDuA3kxxm+e6Z70/y9z1jpjFfA3NN6/NVVc93z8eAe1m+C+lKU/l8Dco1pfk6AhxZ8X+bX2G50HvHjG2+ZqrAk4Tl80eHquqWVYbdD/xO923uJcBPqurotHMl+cVuHEm2szy3P5pwrrkkp3XL7wQ+ADzdM2wa8zUw1zTmq6r+uKrOqap5lm/98M9V9ds9wzZ8vobJNaXP18lJTj2+DHwIeLJn2DQ+XwNzTenz9V/AD5K8p1t1OfDvPcPGOl+j3I1wEnYA1wJPdOdPAW4GzgOoqr8GHmL5m9xngf8BPjEjuX4L+P0krwH/C3y8uq+dJ2grsC/L/7jG24C7quqBJL+3Itc05muYXNOYr75mYL6GyTWN+ToLuLfrwU3AnVX1tRmYr2FyTevz9QfAHVm+P9RzwCcmOV9eSi9JjZqpUyiSpOFZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalR/w8XswjtXyZUewAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "oceny = np.array([[2.0,2.0], [4.0,3.5], [4.0,3.0], [3.5,3.5], [5.5,5.5], [2.0,2.0], [3.0,3.0], [5.0,5.0], [4.0,3.5], \n", + " [4.0,4.0], [2.0,2.0], [4.0,3.0], [3.0,3.0], [2.0,2.0], [4.0,3.0], [5.5,5.0], [2.0,2.0], [2.0,2.0], \n", + " [2.0,2.0], [2.0,2.0], [2.0,2.0], [4.0,3.5], [3.0,3.0], [5.5,5.5], [3.0,3.0], [3.5,3.0], [4.5,4.0], \n", + " [4.0,3.0], [3.0,3.0], [4.0,3.5], [3.5,3.0], [2.0,2.0], [2.0,2.0], [3.5,3.0], [3.0,3.0], [3.0,3.0], \n", + " [2.0,2.0], [3.5,3.0], [4.5,4.0], [3.5,3.0], [3.0,3.0], [2.0,2.0], [4.0,4.5], [3.5,3.0], [3.5,3.0], \n", + " [3.5,3.0], [3.5,3.5], [4.0,3.5], [3.5,3.0], [3.0,3.0], [2.0,2.0], [2.0,2.0], [3.0,3.0], [2.0,2.0], \n", + " [4.0,3.0], [4.0,4.5], [3.5,3.5], [3.5,3.0], [4.5,4.0], [2.0,2.0], [2.0,2.0], [4.0,3.0], [5.0,5.0], \n", + " [4.0,3.0], [3.0,3.0], [3.0,3.0], [3.0,3.0], [2.0,2.0], [3.5,3.0], [2.0,2.0], [3.5,3.0], [4.0,4.0], \n", + " [2.0,2.0], [3.5,3.0], [3.5,3.0], [2.0,2.0], [2.0,2.0], [2.0,2.0], [3.5,3.0], [4.5,4.0], [2.0,2.0], \n", + " [4.0,4.0], [2.0,2.0], [4.5,5.5], [2.0,2.0], [3.5,3.5], [2.0,2.0], [3.5,3.0], [2.0,2.0], [2.0,2.0], \n", + " [2.0,2.0], [4.0,3.0], [3.0,3.0], [3.5,3.5], [3.0,3.0], [2.0,2.0], [2.0,2.0], [3.5,3.0], [3.0,3.0], \n", + " [3.5,3.0], [3.5,3.0]])\n", + "\n", + "W = oceny[:, 0]\n", + "L = oceny[:, 1]\n", + "\n", + "# plt.hist(W)\n", + "plt.hist(W, bins=[2,3,3.5,4,4.5,5,5.5,6])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## Wykresy kołowe \n", + "\n", + "Narysuj wykres kołowy, pokazujący ile osób zaliczyło kurs z Podstaw Programowania" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAATJUlEQVR4nO3deZRfY57H8ffzq/pVia2Ifb+GRtvaIGOfZroH3XfsdPeYaTsTTYdGc3GG38yx3MM5iC2xDIaxdae17Wq70HTSJBFpkdiSK0i0kLgkZKmqZ/64v4qSVklVpX73+9x7v69z6kScUs8nUp967vo8xlqLUso9FekASqlvp+VUylFaTqUcpeVUylFaTqUcpeVUylFaTqUcpeVUylFaTqUcpeVUylFaTqUcpeVUylFaTqUcpeVUylFaTqUcpeVUylFaTqUcpeVUylFaTqUcpeVUylFaTqUcpeVUylFaTqUcpeVUylFaTqUcpeVUylFaTqUc1SwdQPXMC6IKsCnwHWATYJ2lPtYGVgFagRbSH7YGsMA84IulPuYA7wMzun3MikO/M7M/lOo1U/aNjIwxo4FzrLXjJHN4QbQRsDuwM7ANsBWwJbBSg4deDLwFvAZM7Po1Dv2PGzyuWg4tp0A5vSBqAnYD9iIt5G7ARlmN30szgReA54Dn4tB/WzhP6RSynMaYocDQ+m/bgBiYCgwBBgGjrLUX1z93NBmU0wuidYEDgR8D+wNrNnK8BvgAGA38AXg0Dv3PZeMUXyHL2cUYUwWeBa4AXrLWzjHGNAHPAMOstZMaWc76oerRwFHArqTng0WwEHgaGAU8FIf+XOE8hVT0ct4IzLbWXlyfTU8hvQi2AfBLa+19A11OL4hWA44Afg7sS/GviC8m/WH3P6RFXSycpzAKW05jzHGkM9ZBwGbAU8AQa+1cY8wdwGhr7R0DVU4viHYBzgCOJD10LqO/ArcDt8ShP006TN4V8laKMWYX4BxgH2ttpzFmdWA+kBhj1gN+RHr+tELqF3YOA84kvbhTdusBAXCeF0RPA1fFof+4cKbcKuTMaYy5HTgA6LodMI70B9FuwDTSc6aH+ztzekE0CDgVGEY6K6ueTQAuAx6IQ79432wNVMhyNooXRC3AycCFpOetqvemACFwTxz67dJh8kDL2Qv1w9djgYvQmXJFTQWCOPQfkg7iOi3ncnhBdCBwNelTO2rgvACcGYf+q9JBXKXl7IEXRB4wHDhYOEqRdQK3AefHof+JdBjXaDmX4gVRFTib9BC2rLdEsjYbGBaH/n3SQVyi5ezGC6IdgbuAHaWzlNRDwKlx6M+SDuICLSdLXs06G7iE9NUrJecz4Kw49G+XDiKt9OX0gmhT4E7g+9JZ1DeMAk4s8wP2pS6nF0RHAbeQvrmi3PMucFRZr+iWspz1w9jLgXOls6jlWkh6mHujdJCsla6cXhCtCdxL+nifyo97gBPi0F8oHSQrpSqnF0TbAw8CWwhHUf3zEnBoWe6JlqacXhD9APg9sJp0FrVC3gF+XIZlU4r+IjAAXhAdCTyGFrMItgTGeEG0t3SQRit8Ob0g+g/gfvT+ZZGsBTztBZEvHaSRCl1OL4guBEZS8D9nSbUCD3hBVNhnnwv7TesF0cWkT/yo4moBRnlBdJh0kEYo5AUhL4jOAa6UzqEy0w78axz6o6SDDKTCldMLolOB0t2wVrQDh8Wh/6h0kIFSqHJ6QXQMcAfFWR9W9c2XwH5x6L8sHWQgFKac9RULHgWapLMoUbOBvYpwH7QQ5fSCaFtgDLC6dBblhGnAHnnfjCn3V2u9IFoLeAQtpvra3wGPekHU6B3aGirX5awvKfIA6V+GUt0NAa6XDrEicl1O0v/5/ygdQjnrRC+ITpQO0V+5Pef0guhnpK9+KbUsC4C949AfLx2kr3JZTi+INifdhVnPM1VvxMAucejPkQ7SF7k7rPWCqJl0xtRiqt7ygJukQ/RV7spJ+rzsbtIhVO4cWT8Vyo1cHdbW3+F7AX0CSPXPHGC7OPQ/kg7SG7mZOes7fN2MFlP132DS1RZzITflBM4HvisdQuXev3hBdJx0iN7IxWGtF0TbkF6dbRWOoorhU2Ar16/eOj9zekFkSK+0aTHVQFkLuFQ6xPI4X07gaPQpIDXwTvGC6O+lQyyL0+WsP7h8mXQOVUgV0k2RneV0OYEzgU2lQ6jC+r4XRIdLh+iJsxeE6tsmTAPWEI6iim0ysEMc+s4VweWZ8zy0mKrxtgOOkg7xbZycOesvUM8AVpbOokrhdWBH12ZPV2fO09FiquxsDxwpHWJpzs2cXhANIp0115bOokrFudnTxZnzBLSYKnvbA/tLh+jOqXJ6QdQEnCWdQ5XWadIBunOqnMAh6GJdSo7vBZEnHaKLa+U8STqAKrUKMFQ6RBdnLgh5QbQh6YUgXbFdSfoE2CQO/QXSQVyaOY9Fi6nkrQ0cKh0C3Crn8dIBlKpzYq0hJw5rvSDaC3hROodSdQuB9eLQTyRDuDJzOvd0hiq1VkB8t2xXynmIdACllvJT6QDih7VeEO0ATBINodTfaic9tBVbZ8iFmVNnTeWiZuCHkgG0nEr1TPRZW9FyekG0DrCLZAalluGfJQeXnjn3QVdwV+7a1AuiraQGly7n3sLjK7U8Yoe20uXcR3h8pZZHbM1ksXJ6QbQq4PSivkoBu0oNLDlz7o4+6K7ct7kXRIMlBpYsp86aKi9E7ihIlnM7wbGV6gstp1KOKk8569v6bSsxtlL9sLXEoFIz5+bootEqPzaXGFSqnNsIjatUf6zqBdG6WQ8qVc6NhcZVqr8yX7JVqpwbCo2rVH9pOZVy1GZZD6jlVKp31sp6QC2nUr2zZtYDSpUz859CSq2g0pRzkNC4SvWXllMpR2k5lXLUalkPmHk5vSCqou9xqvzJ/HtWYubUWVPlUeblbM56QHS1vYY5ovLCK1dWb9pCOkcRdWI+g7mZjilRzsUCY5aAtZdUb2urGCuypEbRVbDZNhOZw1otZwOc1PTYmEFmkdgaqyWQ+fdt5uWMQ38x0JH1uEXWREf7uc3361NXjbUo6wGlbqXMFxq3kH7VPGpMi2n3pHMUXPFnzrp5QuMWTguLFw5temRL6RwlsDDrAaXK+bHQuIXzn813jW02nRtI5yiBD7MeUKqcs4TGLZRV+GrevzU9o6sYZmN61gNqOXPssuqt4yvGri2doyS0nKp31uCLuQdXxuwknaNESlPOj4TGLYyrqzdOMoY26RwlUppyvi80biGsz5y/7lt5bYh0jhLpBN7LelCpck4VGrcQrm+59k1jdFHuDM2klpTmVso7CDxxUQSemfX+LuatPaRzlEzmh7QgVM449DuANyXGzrsR1WtmGENVOkfJlKecdW8Ijp1L25r43W3M+zprZq905ZwsOHYujaheM9sY0b+zspomMajkX/QEwbFzZ4iZOmWzyse7S+coqT9JDCpZzj8BVnD8XLm+5dovpTOU1AxqyTsSA4uVMw79ueh5Z6/8U2XCa+uZz0R2V1Y8IzWw9PnLi8Lj58JV1RG67pKc0pbzJeHxnXdY5Y/j1jDzd5TOUWKlLecLwuM7ztpLq7etKp2ixCZTS8SeAxctZxz67wFTJDO47LimJ8aubBZuI52jxMRmTZCfOQEelg7gogqdHec337O+dI6S03JKB3DRsOYHxrSa9s2lc5RYB/C8ZAAXyjkWXVPoG6q0Lzq96UEtpqxx1JJEMoB4OePQ7wQi6RwuuaD57rHNpnMj6Rwl94R0APFy1v1WOoArVmbB/GOanvyudI6S6wRulw7hSjmfBGZKh3DBJdXbxjUZu450jpJ7gloSS4dwopz19zvvks4hbXXmJYdVXtxJOodipHQAcKScdeKHEdKuqo6cqIt2ifsAR66BOFPOOPTfJL1yW0rrMnf2DyoTdpXOobiVWuLERlvOlLPuVukAUq5ruW6KMawinaPkOnDoe9C1ct5NCe95bmI+/vAfzFR9kVreo9SSzPdE6YlT5YxDfwFwvXSOrI2sXj3dGFqkcyg3LgR1caqcdTcCpXnrf2szY/q25j1dtEvedNJbes5wrpxx6H8K3CadIysjq9d8ZAxN0jkUN1NLOqVDdOdcOeuuAtqlQzTazuatqZ75SM815X1KesTmFCfLGYf+dEpw3/PGluHzjEGXIJF3GbXkc+kQS3OynHU14CvpEI2yb2XipPXNXL2vKW8GcIN0iG/jbDnj0J8JDJfO0SjXVG/QZUHdcLHEJkW94Ww560JgjnSIgXZw5aXxa5j535POoZgM3CkdoidOlzMO/QS4TDrHwLL28uqtun2fG8507Qptd06Xs+46CrSf5zFNT/15FbNQ39eU9ztqydPSIZbF+XLGob8I+IV0joFQobPjwua79V1NeV8BZ0mHWB7nywkQh/5zOHxu0FunNT04ttUs3kI6h+JyaskM6RDLk4ty1p0FzJYO0V9V2hcNa/79ZtI5FG8DV0iH6I3clLP+WN8vpXP013nN946tmo6NpXOU3ELgp67eOllabsoJEIf+/cD/Sefoq0Es/PL4psd15XZ5Z1NLXpUO0Vu5KmfdL4B3pUP0xX813/FKk7HrSucoud9SS5x8EqgnuStnHPpfAEcDi6Wz9MZqzE+ObHpedwmTNQ04STpEX+WunABx6L8MXCSdozeurN40sWJYUzpHiS0CfuLig+3Lk8ty1l0BPC4dYlnWIvnkgMo43ZFa1q+pJeOlQ/RHbstZ38bhZ8Cb0ll6cl31usnGoPtrynmAWnKtdIj+ym05YcmztwcBc6WzLG1jM3vmHpU39EVqOdOBE6VDrIhclxMgDv23gaNwbOWEG6vXvGsMrdI5SupL0vuZn0kHWRG5LydAHPrPAMOkc3T5jvkg3sFM10W7ZCwADqKWvCIdZEUVopwAceiPAP5bOgfAiOrVM42hWTpHCS0CDqOWPCsdZCAUppwAcehfDFwtmeF75p23tjCzdNbM3mLgKGqJ01fw+6JQ5QSIQ/8s4Bap8Ue0DE900a7MdQBHU0selg4ykApXzrqhwL1ZD7p35S9/2dB8OiTrcUuuEziWWjJKOshAK2Q56/dAfw78b5bjXlu93ondqUrEAidTS+6WDtIIhSwnLNmQ93gyOgf1K2MnDDZf7JTFWGqJ06glhd0dwFhb/BUavSC6ALi0kWO83nrCG6uaBds2cgy1RAdwRt7eMumrws6c3cWhfxnpeWhDVlo7uunpP2sxM/MpcGDRiwklmTm7eEF0AHAfsMZAfU1DZ+eU1uOnrWQWbzlQX1P1aCLpfcxYOEcmSjFzdolD/wlgCPDGQH3NoU2PjNFiZuJuYM+yFBNKNnN28YJoNdLlTg5eka/TTPviKa3Hz6qajk0HJpn6Fu3AudQS0YdLJJRq5uxSX03hUNIXtvt9++PXzb8Zq8VsqNnA/mUsJpR05uzOC6LdSWfRPq0nuxILv5rcekLSZOz6jUlWeuOBw/OwvmyjlHLm7C4O/bHATvRxP9Ba850vazEbwgIjgb3LXEzQmfMbvCA6gvQbY+1lfd6qfPn5pNaT2yvGDs4mWWlMBU6hlvxROogLSj9zdheH/u+ArUkfnO/xp9YV1Ztf1WIOqEWkr/vtpMX8ms6cPaifi44gPeRdYjDJp+NbT20xhtVEghXPaNLH8Abs9lZR6MzZg/q56K7Ar4Ck698Pr97wuhZzQEwHjqSW7KfF/HY6c/aCF0RrARdsxOzDX2w9Y31jWEk6U47NAy4HrqKWLJAO4zItZx9MvmjHjbervHcB6apuLdJ5ciYBbiUt5UzpMHmg5eyPWtvGwPmkJdUV9pZtGjAcuJ1a8oVkEGPMaOAca+04yRy9peVcEbW2jYBzSV/s1i0XvukF0ndpH6aWNORtoL7ScpZRra2VdHHrY4AfQWlX3lsM3A9cTS2ZsCJfyBjjAX8AXgT2BD4EDrHWftXtc4aSvgoI0AbE1tr9jDEjSF9wGASMstZeXP/80Wg5S6zWtg7pLmjHADsLp8nKLNInrG4YqPPJejnfAXa11k40xvwGeNha+zf7sxpjqsCzwBXW2keMMYOttXOMMU3AM8Awa+2kvJWzrD/hG6eWzCY9xxpOrW170pL+O7CBaK6BZUmffX20/jGBWtKIn/LTrbUT6/88HvB6+LzhwLPW2kfqv/+JMeYU0u/vDYBtgUkNyNdQWs5GqiWvA+dSazsf+CFwCLAXsD35u8c8D3iKtIyPUUs+ymDM7tvDdwBbGWMm1n8/0lo70hhzHLAZcDqAMWZz4BxgiLV2rjHmDsjnrS8tZxZqSQfwRP0Dam2rA7uTFnUvYDdwcjeyd4GItJDPU0sWCed531q7ZHMiY8wupEXcx1rbddFpdWA+kBhj1iO9BjA666ADQcspId3I9cn6B9TamoAd+bqsewJZvSfaCcTAlG4fbwBTc7AR0OnAYOA5YwzAOGvtScaYV4HJpLdxXhLMt0L0gpCram2DSM+XlvexNvS4wvwC4Avg826/fsw3i/gmteSrHv57JUjLmXe1tiqwMukM2El6bpb+mh5Oq5zScirlqLxdMVSqNLScSjlKy6mUo7ScSjlKy6mUo7ScSjlKy6mUo7ScSjlKy6mUo7ScSjlKy6mUo7ScSjlKy6mUo7ScSjlKy6mUo7ScSjlKy6mUo7ScSjlKy6mUo7ScSjlKy6mUo7ScSjlKy6mUo7ScSjlKy6mUo7ScSjlKy6mUo/4faTRI4MTM+2sAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# trzeba policzyć ile osób NIE zaliczyło kursu\n", + "# można to zrobić na bardzo wiele sposobów, ale chyba najprościej można to zrobić tak:\n", + "\n", + "nzal = len( W[W==2.0] )\n", + "\n", + "# inne możliwości\n", + "# nz = len ( np.where(W==2) )\n", + "# nz = np.count_nonzero(W==2)\n", + "# nz = (W==2).sum()\n", + "\n", + "# trzeba sprawdzić ile jest elementów \"pozytywnych\" - można użyć warunku >= 3.0\n", + "zal = len( W[W>=3.0])\n", + "\n", + "# zamiast 10 i 20 wstaw obliczone wcześniej wartości (zmienne)\n", + "plt.figure()\n", + "plt.pie([zal,nzal], labels=['zal', 'n-zal'])\n", + "plt.show()" + ] + }, + { + "attachments": { + "a1c56e84-0077-427c-9e61-a519b483d108.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAADaCAIAAADmCwMYAAAAA3NCSVQICAjb4U/gAAAgAElEQVR4Xu1dCXwTVRp/udM0Se+k90GB3vTiLKdgQQrIoQuCKOyigK4IuuJ6rAi664HIguwKsq6uLiAqKIICItciCBQKrZSztPS+z7RN0+baV4qhNMlkksxM3kxmfoFf847vfd//+8/kzTu+xzEajYC9WATcEgGuW1rNGs0i0I0Ay36WB+6LAMt+9/U9aznLfpYD7osAy3739T1rOct+lgPuiwDLfvf1PWs5y36WA+6LAMt+9/U9aznLfpYD7osAy3739T1rOct+lgPuiwDLfvf1PWs5y36WA+6LAMt+9/U9aznLfpYD7osAy3739T1rOct+lgPuiwDLfvf1PWs5y36WA+6LAN99TSfB8ma1tra1s7ZVU6u6/T/8+7c/1J16DgdwORwe/McBfC5HIuR7inhSkUAK/xfz/aSi/gHS/oruj4jPPpVIcI+ZSJb9ZpDgTmjv0l8sbTpf3JRT0lRU11bX1tmlM+CubbUgvDlCfTwG3L4NfvvI5GJyPVVWVvb4449XV1dzudzFixcvX77cqn4MyuCwEU3s8mZFcwfk+vmSppzipmvVKr2BongwCpk4KdTrvhjFhDhFkJfYLp3xFK66faWlpbW2tqanp+/Zsyc+Ph5PRVqXYdlv233lTR2Hr9bAZ/z5ksbqFo3tCiSXiA2Uw3sAflLDfGAnivBr+vTpzzzzTGZmJuGSURPIst+qR2DH5odfq3ZfKM++1YjmL6Svp3As/DWIVYwdGCAjqGtUXFw8ZsyY/Px8uVxuFRqmZLDs7+tJ2Jc5ebN+d075j5erNVp932wkv/N53CGRPrMHh01LDobv0w7r2NbWNnbs2FdffXXWrFkOC6FRRZb9d51VUNu2K6d8z8WKGpXruzeOcUghFz8+ImL+sAhvicBeCVqtdurUqZMmTXr++eftrUvT8iz7QZfe8PX58i+yS/MrWmjqxT5qiwW8WWkhfxgVBYdQcVoEu3YLFizw9fXdsGEDzioMKObW7O/UGXZml27+XyEK77KEkwmOnML3gUWjokYP8Lcp/OTJk6NHj05KSoIjnrDwW2+9lZWVZbMW3Qu4Kfsh7+HDfvPxQvp2cvAzb6BSBu+BmWkhQh47iXYPbO7HfqMBXNymvvh1UuESvcHxF0T85EOkZJiv5NUpcQ8kBCKiDwpquBn7bxwEP60Cddch9F8Ev/JyUSIKPqBSh4xo/1XT4mMDZVQ2imxbbsP+1iqw/wVw9XuTJ3TyiKSGv3Xo3a4zABcazR0avnJSjJeH3eNCyPLYMcXcg/3nPgZH1gCNqg9G+8JeWFaQ5hhwdK/lLxW9/mDCtEFBdDfEGf2Zzn7Yydm3DJSetYiRwVOZpnqvWUvuAjKLTSOSOD5W8eaMxBBvD0T0oVgN5rLfoAcn3gMn3we6LgxMj4U98/uCDIwCjM+CC61ffCBmYUYk4y01N5Ch7Ie9/F2/ByWnzQ3uk2IU+4zQbKjWuHsPOCspaN3vkiVCnk3EmFSAie98RcfAllF4qA8dydE0fRD+M5M86pgt+y9VzfjnqZIGtWPVaVqLWc9+ePrq/94BJ9YCgz27TITS+/WbbraLaOpCAtWGo0AbHkm9LyaAQJkoi2LQs7+9HmybCY6/Yx/1oXO62jaEHEHZSZTp1tKhXfTZuU1Hb1LWomsbYsqzv/4G2DYLNJc5iCZfPJ27KU/l6WB1xlWblBC4fk6KJ9NfAxjx7C/LBp9Mcpz6kLs6zfrAHxnHYccNgnsbZvzjVFF9u+Mi6FCT/uyHixc+fxCoG51EO7p8T4Zv3+kwJ2XSunpBbev0f5w6fqOO1lZgK09z9l/4HOycB7Qd2EbiyjXo3vPdh6uk2xRq1WgXf37+f8y9AejMfji2s3cZgLNaBF0h5fuzFA0ECWOIGBijZcl/c04XMhMW2rIfjmwe/RvRFDOuke0hWibt5cHNzYs+Ow9DWtDeEjMD6Mn+M5vBsbfNbCEgIaDiyOygGgIEMUuEuku38NPs3LJmZpkFaMj+3O3gx5fJc8Mroq/JE05fyW2dugWfZF+uZNTAAN3Yf+W77r4+nNMl7fKu/mVxqKPzBqRphYJgOBc2/99nr1e3oqAMITrQiv2FR8A3TxD4mmsNwRWcnday3Dy9qb3r0Y/PFtYxZB6APuyvvgS+nI+9XJkoakrqLq6MdJfZfntBq2/rnPuvMzC6o70VESxPE/Z3NHVTv4u6FYhPdH3B45LYv0KQCvhVqlVp/rjjglZPe3zowH4YhWHXH0BTMX73OF9S1Hh1deRV5+UwVUJeWfPbB2iPDx3Yf+QNUHiUehrNbd8m4tH+8UYebp+cvHXoCr1Hh5FnPxzkOfl38lyIIZnfUvxuVC5GATZr5a48eKABfXFAm/1wT/p3T7sQ3Aebt8sFhK2kcKEhJDXdotY+s+OijqojPAi3AmH2G3Rg9yLQ2Ua4zfgFctsq10eew1/eDUvCs5vePXCNpoYjzP4T6wAc5XT1NaF+u0Kkc7UWSLf/r5+LjlytRVpFK8qhyn7I+5/XWdGZ0mROR8PGiJOUNknDxv70dV5lM/0OPUCS/bDPs+cpoNciQoMRNTsjJZ2IKIOmGs3qrmVfXCRzAQopdiPJfjT6PHfx7lRtDD1OCvwMEppT0vjleZqtj0KP/TX5iPR5ejMzufKrRBl1M800vSnWHrym6kDlFxsPhuixH0ZaRqbPcxdBXcf6oEN4AHXnMo3tXet+ukEjBBBj/7UfcMZgox7igeXfDvdh1Op2MjDcfqbkahVtlkCjxH64Q/fwKjJcQoxMg/Y9//3EiGKuFHh4/Zp9l+liH0rsz/kU1CO9rjis/PvMAAZubyWWrGeKGo5dp0ccFGTY39kKjpOyVZdI1xoNf5Oz295tIwpff2kx+okM+09tADAQJ/KXouKnhwJpOa9JJbRXq1Tf5VZQ2aJjbaHBfsj70/90zADqa73msYv6RmnX4vs/3UB/+wsa7D+7hZh4bJRwxLvq5BOh5ZQ0ReNGyhrVu3JQn/xCgP1d7QCeKker6znul7TS1zXKbjtT6pqGcbeKAPsvfAbgtl1aXZ61Oc9HFNJKZRcoe7my5SLaAbBczX44NHD2Ixd4xukml+i+4LjRSe8O4rXjLNKPf1ez/8YBirerO+hGs2qihiuro+i6q8PMGrIS9uVVqjTo7o5wNfvp+eDvIcs8Nbvt3cZtAyPgfnMB3RECl7K/uQQUHbeBH8LZguait6PyEFYQCdW2I9z5cSn783cj4R8nlJjevE3Kt+d8SCfaomnVgprW7FvOnqxDku0uZf8l2kdL5sFt71Hstncb5ET23dd17K+9Cmqu2ICNDtmZDXDbO522dFAP6oH86iY1ihC5jv30f/D30Iijrv97xC/UU4pGLXbq9LuRfPd1Hfvp3+k38W9kzc5wdts75u149BqKSwNdxP7y8zQd5rfs4s6WD9ht75ahuZN6oaSpU4fc8ICL2A8P2WXWlVL1dYKMxhEtyfYGHPjPKUFuPYuL2F98gmy4qZavVa8P+onqRmnV3qmbyO3fcAX74aLOigu0chwuZWPKdw/1oc2GblwmEVroJMv+bjxLT6MYs8R5T7Pb3jExvFTRgtqaH1c8+2/9DxMlGmdGlO+b4I9c7xYRQA0GI9zwjogyPWq4hP2M6/SbXAq3vXvtRcrBSCmDWtefcvZrmkH1r0i5hFhlAisOzVTSI54HsYbjkfbLTTd/9lflAQNy4754PIe7jPE1Cbvt3TJaBbWtta0IRcOm/NkPl/cw/fKt+nlhSCXTrXTQPqTWe1LPfiasbLPp+T/x2W3vlkEqbkDonHfq2c/8Zz90u6zm3PLwW5b9796pZY0IzYhTzv46d9kL+5SB3fZu4UYva0LoGARq2d9SDjTuEgRcXJ//l8jrFvzv3kkwyhU6AFDLfrd58Pc4+LGObQIue9r7PWyvatGgc7wvtexvKkbnvqdAE2Fz4Vv9XH/oKgWW4m9CpzdUInO8O7Xsb3e7aaBZLds82W3v994c6HT9Wfbjf2w5UpLXWr4uKseRmsytg07Xn2U/6Syb1LDNX4huPDPS7TdrAJ1BT5b9Zs4hOoGrrvt75GmipdJYHvvsp7HzHFB9dM2OEHGXAxUZWaWyBZUJL4qf/cjtbaOIXnDbe/gJitpCvhmNFpVljtSyX9OCvGvIUjC96ssYKSrPPLKMxCdXh8wiX2rZT4uD/PC50O5S2vYNwYftrsXEClodKjOA1LKfib7Eb1Ncxe40b4RWOOLXnNiSXXr37PkQiyLtpOm71gewp70DON2LiOv41Onhzt2e31D2bTjxuTJVIu4vBgJPvUzQxuV0oUIFypjAFQkpawu7IQrZj62Ie+RyjLqN8j1/3S5oyJh1w9PYUJEj4XqGBcX7e4ZKgTe/lWdoRTHWMbHO4YhRYR2VeqDyrkOsL+2SxtfrbvDr981ImLb5Ax//kKrMZxo4ukrNlYuXD+q03byXyxWRoYkKr0g5z1/UITQ0aQHzYOOictwfx0hlh2SNN6CyObuISUlhLV+YFhYIm9p4JS3ou2z4h65fUtmIJ6saDV4BZaqa803V95xyJRR5RIQmBfn19xEFijs9OM0GIzKD5Q4DJlBIlM+nO1ydwIrUsv/dSNodzUsg1lCUgctNjgiFf4iN/M/2hnGuFPTI70oZVxj3SFWV3luhEvCvVRee12o05k1zuNyQoJhQRayfZ4inXs5r5Rja6beCSBgiVSxLNbeO+hRq2b8pDTS4+yHPg6LCe/oyiVrl6o9Uhta7oT/VY2bfUN7fWKcViPQ+ykp148X6spvYnPD1DYkITgyQhct5vny1wAh7Sshf4oE+/n9IxFAzMjJSJpPxeDw+n3/+/HlTyePHj0+fPj0qKgqmzJo1a9WqVRhC8GRR2e8HwNOfZT+Pw9MZ9dA3+YKaH+clZX500eQnyYmvUri7VQ8svi5IrS0NAyBMOaBdKL5RV3RO095m0Z2NjRXwc1eChzw8LCnIp5+3UCHq9DA26oAeufcGrkRg0ZbeiceOHfP39zcvNnr06O+//9483bEUatkvsWCPY3rTtxaPy9Ppu9kPr3/5XkqdPMT/QK9z7wx6+f7NQ0SShinLr3VEttR7ApDKk6SE96/WqPLqiq9iv6epO1TXbpy6Bk71yIdPz7CQ+JCAGB+PIIlexm0Bxg7X95S4nrbZT41/qe357F0GLnxOjWHItjJsQIxad3fBj8Qo+M83geCGhfAnBl9lzaQVBXXeut9OPZF6aySym/Ul59QtDsbKVQREhgUlBEjDpBxvQTvf0OKCnpLXpEjZffCXzeoF+zY+Pj4cDmfJkiWLFy82lYM9n4ceeig0NDQ4OHjdunUJCQlWReDLoJb9R9aAn9fjU4yxpTIGxrdq7+nGpHcFv7SlwdhueRGEPiK2fNTSokqBabSMwwV+QbU6zaXaonyD4c7PiGN4SaW+cEwp0KefF89fqBEZm3SA/D3nvr+LkaQrMBSurKyE/K6trc3MzNy0adOYMWN6CqtUKi6XK5VK9+/fv3z58oKCO2MGGKKws6hl/5kPwcGXsRVifO6Y2KSmzr5rXZfVpYz++O7rnTkI2sSRRYMerai8pxMvkXfJvIsby7NbG4g5E04oEIeFJgT5DfAVB3noJJwmo7HLqbvL3BCYEvBEkqi/t8WsPomrV6+GXH/hhRfMC8M3Y/hCbPHdwLywtRRq+/2+/azp4T7pfA7P3NhNAbmDMtO9frK6A1iQfyom/1R4xoyC0Mn1tXf67mqVUK0aCMDAkPhGYLhcfTNXr3OqJ9Ol1RTeyoGfHg1h3yMwcECYMs4fDrACb56KY2wj4LWB5yUyR8CU0t7ebjAY4JgP/OPQoUO9B3aqq6uVSiXUKjs7G5bx8/PDkIMni1r2B8Ti0YnZZXiw42LpeiH9+sc3w423Si1l3knz+GXPIM53rRMXXZcMVfUa3Gyo8gVgtEw5wsu/tKXmfPO9U2YYArGz4Bt2VdUN+DEV8/YODA9OVHpFwKloYYfAgaloDpfD98Fif01NzcyZM2GLOp1u3rx5DzzwwJYtW+DXpUuX7tq1a/PmzXAY1MPDY+fOnfA2wNbfZi61PR/YdX07GHQhFM3LJkCEF5iUMKRSXWNR7KjO8OUfVhotzXP1LS8SN2Y9e60rWmNptstHqeLxrtbczNF2Wpgy6yvKie9isWc4nIr2jfYRKsVaCWjUG20dS8r39wh8YbATbRJZlVr2Q823jgWVuURaQDdZUxOHlbRXWdP6xarUwf/pNQBqrdztdKOXf83k5QUN/lpLyx8EYoNPQHl744WG8iJMMYRl8rj8kODYEMVAP0mIBE5Fq4BB3ben5JHo7zc/jrAmnRNEOfu/XQzy3Dq69/SkjKK2exbz9PHgp6eTPI/fnQKz6V99SHTF2D8WVYmsjdZ4+cMps+u1hec61ZaHlWw24XABf78w2FMKkIXJOL4CNd/QrJVPCJdnRjgskNiK1Pb7oe4BqNz3xOKIXxrPVm915fDCLYUhhrK7M7jYwnkVheE7ng+KHVKctrDM0qEZt6fM0vjSFGX3lFlubTF1YbTrG8rgx6S/1NN7SsCLcmx7KMy1/AZGogIKt2c/sIF5PUe9+SFPILRvC4jg2rkBO/6Yof4hQGn5iabXcmvLglUtWQHRT4cnZUrkuMYciWVCW3uzV2gQsTKdkWbDE86Itlw3GInFfZZ1oyTV4ohnn5aPeBTlz05xQB1x9v6kL5cM5Wd7+Vq9eVobxbXlSUDw+9Ck+YH9B8F1ow405FgVidxL5h/gWF0yahFpuUajGTp0aHJyMpyCfv311y2rK1UCv2jLWe6RarPn0wPDG2EXOjOSHYNEeviztH1/TPW6KZFZ/h2AYg0GTn25ornhfp/Qp8MHZcn8qCClMnqAYxaRVItI9otEoqNHj+bl5eXm5h48ePDMmTOWlQ4fYTndPVJ5AO8o9YujS7mBSsdQ4Wi7fL77+7Bjf05U1AlFFubXTGLVrcLaslit8bGQhIUhsYPhqmLHWsRTK2QgWv1eItkPZx/gvDREQXv7sjoZETESD1JMLWNttsvc3ipu66dzfIATdOS0NSu+Wj0i962BwWou9n5CI2io9G2oGSMLfDoiebq3MsRcH+dTIgah1e8lkv0QHb1en5KSolAo4PqkYcOGWcar3zjL6e6Ryrc15tMbhh8kN288nOYkMLya0tAdK0eVbo0Isb3WX9POrymN1nTNCYpbFBqfIRCJnWzdVF3sKVVG98eQBpfuJCUlQf4MHkzRdBjB7If7cWC3p7y8HK7EyM/Pt2yqPBgEwNUpbnrh7/n0APRa1AXtEKydUDhx5N/Mjd7+TIbqW2Ugrr5NU7VXfdVwD98lEckP+4V0b6dy8gpLHMSxssrDJBluaoH86b2fy8lGsasTzP6exry9vceNGwe7/lbb7jfeahbTM+xlP3xcvzK+mhtAzMYg8YXDCTuXDOOc8vHDtcWkSwN/OcLb1TMDBy4OSxwrksCpAwevqBSKnuj49SOS/XV1dc3NzbDtjo6Ow4cPx8ZaX9MWMxm/igwrybM13m9ubwm3eeccJSBuaNLz2I7UPU+nya56ynHdA1Cl5jppXUW6QPpk+KA5AZEx5kpip8CXwOj0oTbLTJw4MT09fevWrdglicrF9SOIs7GqqqoFCxbArj9cfTp79uypU6darRg1BkgVoI2YVelWW0EyA2v8xbrCu2TXh84cHLm7OwgKMZde573vH0Mlsvopy2+0hnZqcK3j13VPmcEX4pCA6PEekoLuXWaqvnsVLKoX2H+gxMvG/NqpU6dMm1rgo9O0qcWiQEISKV/nY9L6wIvg7EeE2EAvIS+mTTnQ5MhBjgLA/e+BaG4u8YfdG/yDqzOfLaiV6+3cAs/lGv2C67rUebW3Lhsx45KPmvv4sBmzcXoKY1MLTgk4ixHZ88HZ5J1iiQ/bV54ppfl4h/v7GqwFhlUTG7k+Pn0znP7Ora8M/uKlkUUfRoXo7dIOTpnVlStaGjN9wuGU2WSpr9WXk9gRd3YnWlMW7mVpvR3cpWdTS2IiAS/61toypbuO/WFDgXe4Tf2YV4BntItg9wBwg9ewZ24YsGfMFD+A/Fv5UdufHdn0dVCQ3axQt8ApszgdeDw0YUFwTFqfKbPQ2AQvZXcEO4wLbmoZNWoUXCgAlwtMmTIFbmrBKExUlut6PtCCw6+DkxuIsoQuctakT93V+Ksz2m68kh703VlnJNisqx71cEHQxIY6B/dJij21Xn4lzVXnW2q7F51OXPJs0viJNhulvoDddzmRKrpl58feEU9zwP8cl2dIJHfCRHJyV/KuJYM9fpV54R0U6q2npl1QU9q/U/tIcNyi8MRRMSNGm1uBQopL2R+YBEKRGwMm2ytcp4Myazi6v05u58pk5KpqNMoPfDTk4Ipk3zKxxMGxwcZqL7+I6UIPD3JVdVS6S9kPlR7+tKOa07Uez/ZqA9um5fNrDs7DWjVgWwTOEp1qv2/eGX76tdjAZj7fEbYkjCFlyRBO9bGLOWIPtkT7cuNnAK/umMbuc/GJYD+E62PfS3VZQ6jBjdtUG7zz1ZE3NkSHwMWLdrQZEC5TRqKzl6uv5q5mP5cHhi7uqxSjvzs222URkpWD8kFMP4tZZCTySq9HbF8xsnZbaAhe2qRmIj2sh9cMMtC8IzN9IRA6vnqERMXIEc1zut9v0kvN0b47VcfxpBQ94eXTA7c/NaLzxwCFjRdima+4P2bEQrgsIDU1tc+aABis08vLC670hNcbb7xBjhPuSEWA/WIvkPIoqUYiJZzAZz+0K0dYeWKuC7aMeJzem/T1kiHCHLmP1XsgdWI4jF2FAf7GjRvj4iwoD8OUw5We8HI+Qj9G6zALAfZDLYY/BWAXyD0uHtFnN8EoiM2ZrjgIyGiUHfok/Ydlqd63PDz7DgpJ5ML4kcEYLoXL4H/44YcnnngCowzZWWiwH8b3THucbFMRkU/UW29vc1amX+dEuaaHzenq9NmzbvjPL8crGgSCu3RKyQzn9fpqDv6KFSvWrl0LYzKbZ50+fRpO+k6ePPny5cvmuQSmWGibQOl2iBr3ipv0/gkZ8ewDbAtHs2EmjyMmbB+WHY67XZSjagz8alVG/nv9gzWwsyP1EQ26D2soD56/AjcAwsXM5g2lpaWVlJTA3eHLli2bMWOGeQECU5BhP1zwnLGMQMOQFcUDBjJ0OyUqy36EipVhGMrzqorCd/xpVOWnY6cqeZiTA3Ax8969e+FWxkceeQRGQpg/f75JrFwu79kdnpWVBXeH19fXY7ToZBYy7Id2ZDzbveif6Ref6H6/CbD3gnLbx7l+27gUqCJH9MN249tvvw37/cXFxTAU8/jx47dt22YqD8OU95zORFSYcgxNUGI/HPcc9xKGrszIIo/9EB8YBZEb5uK5VeVLLzmwDQ2GKe+JVA7DlMPlzbDf/+yzzxISphyDNi5d42muFzyH58NhoL7APIcxKbsTMlerr5NnznhN1FP/LDF2dZHXBIZk2fj7Qj/8EKMAUlkoPfshMHDcc8p6ktavI4I730hKv99k3VHxrV/nOBIF0Xl8OEKhYuWLzsuhTAJi7Id2wy2/6b+nzH7qGyJ8vN/chDdDL2hGOhgF0Vwa/pSAZ5cJoyLxl3d5SfTYDyGZ+CbwxjrR0uWoOaMA2c/+Ht3+PKqUG2xjO5UzVpjXlaSn+y1aZJ6OcgqS7BdKwbQPUEbNGd0oePZD9bqjIP7O25koiHbZyJN6Bq99l3ZdViTZD4GPHg9S744B2+UJxAvzjLhihzhvBSFREHGqoXz5ZUGIi8eacKrauxiq7Ic6TnoLwJiHjLuoefb3wNYdBXEo6VNgsgkTvB56iI6OQpj9cO3nQx8DXt/lU3REubfOPMy4N8Ra1x0F8b5qroLE2Px8P7+gv75JrNqUSUOY/RADGOs8k67IWnMhH85pUHjBKIg75igcmH7CqWPQm2/ySAgxhLN1J4uhzX5oHNz4m8SouFc8ksf7zQnxjfR68SxSogf4PDJHOv4+8xbpkoI8+yGQD24Cyni6AGpTTyp7PiZlXh5wUZ9iYR+JTW0xCngOHRr4l79gFEA/iw7sF0jAnO0AvgYw4uJTNebTGy09ML5OaBREYXh4yAcbKRtRJcnzdGA/NB1uf5n1L2bs/3LJsx9CCKMgfjuPmCiIPLk87KMtPG8bMZlJoiyBYmnCfmjxwElg2kYCLXeVKJc8+3uM3S6/UjndRhB9m7DAxTyhmz4QRhFwmovNtsguQB/2QyRSHwMT/0o2ImTLd9Wzv8euF+NyjU5EQYSHUIS8+47E2olsZGNHtHxasR8aD/d/jf4T0SBQKo+n11Ha3r2NdQH9mzAKotzBCFPKV16RTbZx7o7FOCUuNBmjabqxH5oyYRUYQrPVVL0dwDO6kv1Qk+4oiHOjMThhLct/6RKfx2wvP7EWp8SaWBem05D9EK2s9+k7CcCncK7XGrG6oyBOsS8KouK55wJWrLAm0JSOQpwSm0qaCtCT/TCW5MytIGUefjvRKenano8Jh5VJMAoirl8ADpcbtGaN3xJcAScx4pSg4wKasx+qD3eBzdgMRtl+GqEGOmVrPLENh1EQ35naxZXaiIIIR3hC1r/vPQfXkVsYcUqwlXFVLj2f/Sa07l/TvRTUrrDCrkL6t3b5Ln3r7W39BWHVsbnWT5WFTxiJJGzzhzLchwhhxClxNeqW20dsV7tlJW2lXvoK7Hka6B08ZseWdILzVR5eIwMRmrf+KCfZ51COuZE8L6+wrR95JDuyQxJGol23bh38KTAXi1QKzZ/9PVgmzQZzd9IlFBzFazxtsm1l2jVOv4g+xQRKRcS2/zpGfZstolOAEc/+Hjhrr4Av54OGQnTAtahJl0CUHqq0mOWqxIzOsOc2Vxs7OnoUgKQP3biBH0jptmCX2M6IZ38Pcop48OSx7gURaF+IjPn0BukXUdnZOQk9Kb7z50du+687UB/ay7h+DmIAAAVPSURBVKBnv8mfP78Pjv0NULuJxK47LslF8Zaxlfx37uDYzN/Js7KwizEpl4nsh/4pPQN2/wG0VKDpqpR+kXrK97hgQxHvF792zNoIed8XAOxadM9lUM+ntyvCh4Olp5CdD+ZxEDqqAy5cW5iwcHvWdnejPuQLQ5/9pjuh4BD4/jnQUo7UU2rYgBi17s4rpmsV6+/Tf/WI1ckBjgxrulZzQlpnOvshSF3t4Mgb4NxWgMACmx6fjRgY16ZtJ8R/DgsR8URLk5cuTFzI5zAtagZ+TNyA/T1glJ8He58BtVfxQ0NeydExic1dKvLk25ScEZzx2vDXQmVYx6vYFMKAAm7Dfugrgw6c3QLgiJC60bWeuy82ub6zySU6BEmDVqStyIpyo4EdDJzdif09MHS2gtP/6P50tmHgQmrWhPjU2o4GUpswF+7n4ffkoCdnD5wt4Fo9Y9S8FrNT3I/9Pf5UN4AT74HznwBdJ/UOnpQwuFJdS1m7cqEc9u/nx8334HtQ1igtGnJX9vc4B44FnVgL8nZSfA9MSRxW2l5FAT8g7+fEzoEDmvAPCpqjXRPuzf4ed8HXgAv/Aef+TdnA6LSkEcVt5M7ERXtHz4ubN63fNPZ5j3FPsuz/DRw4+Xrte5C9Fdz6GQMvQrJmJI0sbCsjRFQfIVwOd2zY2EfjHh0WOIwM+QyT6b5jvX0dyeGCuAe7P3CtaM5n4Op3QEVW54RPwnacMHnYlKgpM/rPCJHSL45+X19Q9Z199ltHGi4WurIHXN1L+Hqh2cljrqqKrTdsRw4cwbw//P7JUZOT/JPsqMYWvY0Ay34cRCg/By5/Cwp+BPU3cZS2XWReyrhLLUW2y1kpwefy4aK0YUHDJoRPSPC7szLZSlk2GQsBlv1Y6PTNa68DJb90f0p/ATX5Di+deCxlfG6LfTcS7NBDxg8JHDI0cGiaMk3Cl/TVjf1uPwJsv98ezDwDQPz07g+8OlWg9CyoyAENBd3Hazfc7F5QhO/C0+/3FHj29+4PV6EN8B4A/4fUlwlk+MSzpfAiwLIfL1J9y4nkYEBm98d0qSpu3wYFoPEW6GgEHc2go6n7o7n9h+7u4ek80L2wHHZg4FIzH7GPv4c//MC52O4/xP5KTyXkfZBnUN8W2e9EI8D2fIhG1Jo8nca03UzHE/B4Ag7gWCvrcLpGoxkzZkxnZ6dOp3v44YfXrFljEgXjLEyfPj3qduzlWbNmrVq1yuFWGFORffZT5Uq+2NQSeaCLRKKjR49KpVKtVjtq1KjJkycPHz7c1O7o0aPRjzJClT+622Ho3i4qIUSpLbhRC1IfagTZDy/4FSXtkNOFZT9yLnFSIRhAPCUlRaFQZGZmDrs30P7p06eTk5PhD8Lly5edbIUZ1Vn2M8OPd63g8Xi5ubkwlnJ2dnZ+fr4pIy0traSkJC8vb9myZTNmzGCa2Q7Zw7LfIdiQr+Tt7T1u3LiDBw+aNJXL5T2doqysLNgpqq+vR94I0hVk2U86xFQ2UFdX19zcDFvs6Og4fPhwbOzdILXV1dVGIzy8HcDfBIPB4OfnR6ViaLZF3vADmvYyXKuqqqoFCxbArj/k9+zZs6dOnbplyxZo89KlS3ft2rV582Y+n+/h4bFz5072hRjCwo73M/x+YM3DQIDt+WCAw2YxHAGW/Qx3MGseBgIs+zHAYbMYjgDLfoY7mDUPAwGW/RjgsFkMR4BlP8MdzJqHgQDLfgxw2CyGI8Cyn+EOZs3DQIBlPwY4bBbDEWDZz3AHs+ZhIMCyHwMcNovhCLDsZ7iDWfMwEGDZjwEOm8VwBFj2M9zBrHkYCPwfjrxzuEa07H4AAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "### Narysuj wykres kołowy ilustrujący rozkład wszystkich ocen z laboratorium\n", + "\n", + "Powinniście otrzymać mniej więcej taki rezultat:\n", + "\n", + "![image.png](attachment:a1c56e84-0077-427c-9e61-a519b483d108.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOoAAADnCAYAAAAQCsqQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkI0lEQVR4nO2deXhU13n/P+8skgZJjCSEFpBgwMYgQNiAbTaDKU1Sx6SpuyZp8rPsZnNCmtV2lC6JkrSNGqeJcRIbGictzuo0zeJY1HHaBGzjhc3AGCTb2AgEmF2AQNvcmfP7446wLGsZiZk5986cz/PcR9LMmXu+2PrqnHvOe95XlFIYDAZn49EtwGAwjIwxqsHgAoxRDQYXYIxqMLgAY1SDwQUYoxoMLsAY1WBwAcaoBoMLMEY1GFyAMarB4AKMUQ0GF2CMajC4AGNUg8EFGKMaDC7AGNVgcAHGqAaDCzBGNRhcgDGqweACjFENBhdgjGowuABjVIPBBRijGgwuwBjVYHABxqgGgwswRjUYXIAxqsHgAoxRDQYX4NMtwDA8ofqmCUDlCFcBEItf0fhXC7gIdADn+309ATTHr5bWxtVdafznGMaImCJRziBU31QILAaWAUuBmUAFkJPCbhVwENjH6+ZtBva1Nq4+m8J+R0REqoGHsP8bxIB/V0qtHdBGgLXAzUAncJtSame6taYDY1RNhOqbpmIbcln8qgW8WkW9kWPAdmAj8Ghr4+q2dHYuIpVApVJqp4gUAjuAW5RS+/q1uRn4W2yjLgLWKqUWpVNnujBGTROh+qYQ8E5eN+ZkrYJGTxh4NH4929q4OpbOzkXkV8C3lFK/7ffaemCTUurH8Z9fBFYqpV5Lp7Z0YIyaQuLT2b8E6oDlgOhVlDROAY9hm/ax1sbV51LZmYiEgCeAuUqp8/1efxRoVEo9Ff/5/4DPKqW2p1KPDsxiUpIJ1Td5gbdgm/MWIKBVUGooBd4Xv6xQfdNTwPeAn7Q2ro4ksyMRKQD+G/hkf5P2vT3IRzJy5DEjapII1TfNwTbne4FJmuXo4jXg28C61sbVpy/3ZiLixx61f6OU+vog75upr2FkQvVNucDtwAeBBZrlOIku4PvAva2Nq5vHcoP4iu4G4IxS6pNDtFkNfIzXF5PuU0pdPybFDscYdQyE6pvysM35Wdy3KJROFPAb4ButjasfH80HReQG4EnsRay+hau/A6YAKKXWxc38LeAm7O2Z2zPx+RSMUUdF3KAfwjZotk5vx8pe4F7g+62Nq3s0a3EdxqiJ0BD0AHXnVeD9V/d8Z4nCY0Ivx84B4M7WxtU/1y3ETRijjkRD8Cbgq9gBCdwT+ast347eskyvqIzg98AnWxtX79EtxA0Yow5FQ7AGuA97q+USEeVtq+n5jwoLn1+PsIwiCnwH+PvWxtVndItxMmYKN5CGoNAQ/BSwkwEmBfBLtPpu38PPpF9YRuIF7gCaQ/VN79YtxsmYEbU/DcFq4D+BVcM1iyo5Pqfne+O7yc3EYAadbAQ+2tq4+qBuIU7DjKh9NATfh70VMKxJAbyiyr/o27A19aKyjpuBvaH6po/rFuI0zIjaECwBHgD+ajQfiyna5/U86L3AuPGpEZb1/Ay4vbVx9QXdQpxAdo+oDcE/wh5FR2VSAI9QfI9//fPJF2WI8xfAs6H6pit1C3EC2TmiNgTzgH8DPno5t1GKC9f2PNB9mmBpcoQZBuEs8N7WxtUbdQvRSfYZtSFYDDwC3JCM222Jztn83sjf35iMexmGJAY0AP/U2rg6y35hbbJr6tsQrMKOH02KSQGWevYumszJjDut4TA8wJeAn8fP+GYd2WPUhuAc4BlgTjJvK0Le/Tlr9yfznoYhuQV4LlTfNFO3kHSTHUZtCC7HHkmrUnH7efLqkivkiNn7Sw81wNZQfdPbdQtJJ5lv1IbgnwGPA8Wp6kIE33r/N46k6v6GNzEe+GWovukm3ULSRWYbtSH4UeC/gLxUd3WFHF1ytex/KdX9GC6Rg/3MOmKASiaQuUZtCP4zdlqQtPwbRZD7c9aeTUdfhksEgEdC9U1JWxx0Kplp1Ibgl7GzAaSVyXL6+qWeF/amu98sJx/YGKpvysh8vn1knlEbgn8D/IOu7u/zf6tXV99ZTCHwWKi+KWPzVmWWURuCbwXW65RQKufn3+TZakIL008R8HiovqlWt5BUkDlGbQjOww7k1p6r+B7/+lTWizEMzQTgf0P1TbN0C0k2KTGqiOSJyFYR2S0ie0Xki4O0ERG5T0T2i8geERn7tKUhOAlowl62106hdM15l/d35hicHsqA38VLiGQMqRpRe4BVSqmrgWuAm0Rk8YA2bwdmxK8PYR81Gz0NwUJsk6YkmGGsNPgeKhZiaa3PYrhEJfDTUH1TxsxsUmJUZdN3jtAfvwYGU/8J8FC87bNAUbyCV+I0BH3AT7H/GDiKgPTO+JC36VndOrKY67CT0mUEKXtGFRGviOzCLpz7W6XUcwOaTAb6l/I7zOiTWd+PnXzZkdzp++lkL1FLt44s5hOh+qZbdItIBikzqlIqqpS6BntKer2IzB3Q5PIK/DQEP4Kdrd6x+CU69TO+/zKJ0PTyvXgtWleT8lVfpdRZYBNvHvkOA9X9fq4CjiZ004bgLOyD347nw95Hr8ylt1u3jiymGHg4VN/k6vSuqVr1nSgiRfHvA9hpN1sGNHsEuDW++rsYOJdQFa6GoB/4AS4pZ+iVWOXnfQ8NnPYb0ssioFG3iMshVSNqJfB7EdkDbMN+Rn1URO4QkTvibTYCrwL7sZMwJ5oW5YvAwmQLTiXv8f5+bj5dHbp1ZDmfDtU3/bFuEWPFXalYGoLLsCtPuy5Q49Ho4s0fi3zcpGzRyxlgfmvj6kO6hYwW9/zCNwRzgQdxk+Z+rPY8O7+Y86Zsg15KgB+H6ptc9zvkJsH/ALg2NEyE8ff67w/r1mFgKfB+3SJGizumvg3Budi1YFy9cqcUXUt7vnnuNSZU6NaS5ZwCrmptXN2uW0iiOH9EtWuTPojLTQogQuDbOWtf1q3DQCnwZd0iRoPzjQq3Yy+vZwTzZf/iaXLUdYsZGcgdofqmq3WLSBRnG9XeM/1H3TKSiQj+df5720ZuaUgxXmCtbhGJ4myj2qOp68O/BnKVHF4yRw6YXMD6uTFU33SzbhGJ4Fyj2qNp2vMepQMRPOv8957WrcMAwFfcsF3jZIF/QwaOpn1Ue04uWiT79unWYWAe8Ne6RYyEM7dnGoI52KGF1SM1dTMnVXDndT0PZGxCLhfRCsxsbVzt2MR0Th1R30+GmxRgopxb8DbPNpMITT8h4DbNGobFeUa1QwUz8tl0ML7mX689GZsBgI/oFjAczjMqfACH5T9KJeOls/YvvZu26dZh4JpQfdPAvF6OwVlGtUfTz+mWkW6+5PvPIDhxsSDr+LBuAUPhLKPCHzP6vEmuJyC9V33Au9GkbNHPu0L1TUW6RQyG04z6Xt0CdHG37+FJJhGadgLArbpFDIZzjNoQLAZcESWSCnLECn3K9zMzqurHkdNf5xgV/hK75mXWcof311fmEOnRrSPLmR2qb1qhW8RAnGTUrJ329uGTWOU/+r5vknbrx3GjqjMikxqCU7CjQwbL9ZtVxJScqu15MO8igQLdWrKYHqCqtXH1Kd1C+nDKiPoejEkB8Igq/Rf/gzt068hycnHYopJTjJr1097+vNPzzDVFdLgmTUiGslq3gP7oN6pd1zQji8+OFRGC3/Dfv0e3jixnaai+KU+3iD70G9WMpoOy0rP7ugrOHNetI4vJA5bpFtGHE4yatXunwyHCuG/l3Peibh1Zzh/qFtCHXqM2BMcDs7VqcDAL5aUlIXnN5FfSx1t0C+hD94i6yAEaHIsI/gf895qMhfpY6JTYX90mWaK5f8czS9qWzJbWV3TryFI8wErdIkC/UR17/s8piOB5wH/vSd06shhHPKfqM2pDUDBGTYgpcmLRddLSrFtHlpLlRoWZ2NWgDSMggnwr575O3TqylJpQfdMk3SJ0GtU8n46Ccjm7cJVn527dOrKU5boF6DSqmfaOkq/7HzDx0Hq4UrcAM6K6iCK5OO9PPU9u160jC5mmW4AeozYE84E5Wvp2Of/s/16BSYSWdrLUqHapCt1bQ65knPTMus37G3O4PL1krVEzPgt+Kvmc70cVHmJR3TqyiOpQfZNXpwBdRp2iqd+MIFesaR/3/dwkQksfPjQPLmZEdSkf8/5ymh/LsUWNMhCt019dRs2akhWpwiexyX/n+6F5Vk0f03V2rqVAUW2oulzgVI5S7QUx1VESi3aVWdHIJMuSKsvyV0eswGTLGl9pRUuKYzETvTQEt3ofr7nHetfFTvLydWvJArSOqHoqiYmUKyjtESnt8cBpvLw8VEZfpXq9cDpXqfbxsdjFCdFod4UVjU22LKmOWDlVlpU/2bKCFVa0NKDUuLT+OzTjFTXxn/zf2/zpyEdv1K0lC8hCo0Jpwi1FcqJQ2SlS2enxcMznY2/uEG2VuuCH04FY7FwwFrtYGo1GKq2oqopY3mrLyq2KWAWTLKt4YjQ6wQ/+5PxT9PKnnqeuaeDWc+cpCOrWkuFoXVdxvlFHg0hBBAoiXi/nvV7a/H4GrRKslBI4k6PUmXylOoqjfVPvKNWW5a+ORAKTrWhhpWWVFMdixeLgVKYiBL/uX7f5A5E7zaiaWgI6O9dlVL1TVBFRUNIjUtIDnPF6eWXoqXfEA6fzlGoviMUuTIjGesotK1plP0/nVEescZMtK1huRScUKKUlafYfenZeW0b7yRMUT9TRf5agdQamy6iOHaHehIg/BhWdIhWdHg8nfNCcO4Srlbrog9OBmDoXjEUvlkZjvZWWpaosy1MdsfKqLCt/kmUVT7SiE3KSWGdHhPxv5nxzx7t6P2+Mmjq01kUyZemTiUi+BfkdXqHD6+GwH3YxyAO1PfVu9yvO5KtYR1E01lkWjUYmWRbVEctXbVmByRGrsDJqFU+IxiYkMvW+XloWV8uJI22qLOvqy6YJY9Ssw556F/cKxb14afd6OTDUzEopyxNf9S6MxS6URGPd5VErOjkSlWor4q+OWPmTrWhhWdSa8ID/3lff0fsvxqipISunvgo3TX91IuKLQXmXSHlXfOrdMsQf9+oT1sT1v//No92hxbEJPuUvzikO5nvzJ3tECtOsOuNQ0KGzfzOiZhA1bZyd8upv33GmvS28a+4d46MXj3REu3ccKJCuwol5kyLlgVBPSW5FIOAtrPKIR3t6EZdxXmfnxqgZxJxDqgegpL2ldsXT9ee3L7jzcGfhn6/sBdqsoy8eaN/+Wizy6wkQnZTjCZwpy6turQhM6yjNq/IX+IJlHvFNExGtp0QcjKWzc2PUDGLaMXVp5coX7R6/eNs/LTtY/danX5n+J7Ue36SZOQXvnAkQs06+avVsP3S4c3/F4c6XFvR9xiPe7gm5k16sCIROl+VNVeP9E0r8ntxpImJCFLPUqF3o3kvNQCZ0UD7wtaltv1068dTuQ9sW3n0w6gvMBfD4Jk7P8b19OvkQi549HO3Z8Uq0t6U4pnrmnuxum32yuw14su8WsaC/9EB5IHSsPDC1pzinojDPO26KiCfbtoK0ZoHUUnG8dkPtqzjg1Hwm4bNUzw/vifoEBp26xsRjvTD7/U+dKr16BSKDnppSsQsnrO6dL0Z7941DdV7NMH/I87wFJ8rzphwqD4QuluZNzhnnG1/pwTtVRDJ1kfDxqsblf5RIQxFpxV58igKWUuraAe+vBH4FHIi/9HOl1JeGu6euEfUYxqhJZdpxWsXOlTwoHhXzzdv7nZWnJszdvWfuhyYi3jctJomnoMw/bkWZf9wKVKzrbLRn916rN+wn1jEPuwzhJbqjF8oOXtxXdvDivkuv+cR/YULe5AOVgWntE/OqpdA/odQn/ukiMlR0tps4Pcr2f6CUOjXM+08qpd6R6M10GtWQROYcVKcYxqh9lJ5+4erlWz57bvuCu5/pGlc2ZCZI8QSKfIHFy3yBxSjVeyHa88Iz0Z7dSsXa5wGDhkpaKlJwvKu19nhX6+v3QayinLKXKwLTTpQFplpFOWXjcz2BkIi47fjicKZLOcaoGUJNm0p4scNvdQWXbP3ikldDNz/VOvXm+YywWCSSU+DLW7DEl7cApayeaG/LtmjP8z0qenIOI1Q7UChfe+/xGe29x2c0n3v9nHu+L3i0LG/q4YpAqKsktzJvnK9wske8Tk4oMJqi0gp43I5rYb1S6t8HabNERHYDR4E7lVJ7h7uhMWqGMOXk6M/iTm/deEP5iZ2t2xfcdTDqy0uoTq2IL9eXO/c6X+5clIpZscj+563uHR0qemwmqDctZg3FRevcpAMX9kw6cGHPpdf8ntxzE+0to7MT86p8Bb7iiV57y8gJRxKPjKLtMqXUUREpA34rIi1KqSf6vb8TmKqUuiAiNwO/BGYMd0NdRn1NU78ZS9EFxhTAkN95LLR8y12R8NwPbzpdMmfIhabBEPH4vDlXzffmXIVSSsWsg+Fo9/YzMevwFRAb9egYifUEj3buv/po5/5Lr3nw9pTkVrSUB0KnyvKmRoM5pcU5nrxpkv5oq8OJNlRKHY1/PSEivwCuB57o9/75ft9vFJH7RaR0uGdaM6JmAIFudd6rGHOMr0fF/FeHH1h5ovTq51+Y84EKxFM52nuIiHj9oVqvPwRAzDrSYnVvPx6LtFZB9IqxaosRzT3Vc2TWqZ4j7GVL38uq0D/hUHne1KPlgandJbmV+Xne/GqPeCrG2k8CJGTU+J6zRynVEf/+bcCXBrSpAI4rpZSIXI+du2zYxSpdRj2oqd+MZMZRdQiYe7n3KTu1e/7yLfXt2xbe/Wx3oPSyagN5fJNn5RRMngUQs068avXsaIv17i+HyKzL1QlIR+T0lI7I6Sn7O3ZeejHXM+5UWWDKoYpAqKM0t8qf7w9WePCGZBSzhCGIkfjvbDnwi/gulQ/4kVLqMRG5A0AptQ74C+AjImJhxxS8W42wT6prH9UPXEDz0aFM4T2bok/+6TMqqRXHXpn2zicPTnnbQkSSGpgSi7YfjnbveCUaebEE1TOHFGfC9Iqvc0LupAMVgWlnyvKmMD5nQolPcqaLyGgyNuyvalw+7DNkqtFiVIDaDbU7gflaOs8wGn5gbZ7dRtJTsVzIn/Tq9gV3RmLe3BG3fcZCvwCLfFTnPNI0wxMkGsyZeLA8b+qx8kAoUpRTXpDnHRcSkQlDfOQXVY3L/ywd2oZCZ6zvLoxRk0LVKVKS2Kzg4tHpK566q3d37Uc3txfPXEGSo44GBFi0xwMscgYLsEgmCuU923ti+tneE9NfPL/t0uvjvIXHygJT2yoCoc6S3Em5+b7xlYJnioi8kCotiaJzRP1b4D4tnWcYP/mKddoDQ40GSeH4xIU79s6+rRrxlKWyH6AvwCIc7dmFip2tZYgAi3Tgl5zz43Mm/r/bHlr/iC4NoH9ENVwmRRfUKU+qsjr2o/zkjoXFT790atvCz27tySu+PpV9DQiw6B5NgEWyiaje8ad7juwZuWVq0TmiFgLnMJkeLotFLbHnP/OLWFofIV6+4s+faKv6g+sRSdn0dDDiARbheIDFLFApH92BM595+NGUzlYSQVuN0nBduAN4VVf/mcLsQyrtmQdmvPLfK67d8a9tnmjvy+nsty/AInf8e1bkFn2y1F/wZ2GPb8pm8CQcjDAGEqqaJyKtIhIWkV0i8qaq8GJzn4jsF5E9IrJgsPsMhe6D488AY94MN8BVR5SWjAzjL7TNWL7lru7d8z62+WzRjLQn/xYRzyABFsdikdYpEE1mQacnRm5yieFOzLwdO0xwBrAIeCD+NSF0G/Ux4H2aNbiayjPpfWbrjzdm5S3Yde+Nr5Uv2tY8633TEE/Kn5WHYogAizKI1FzmrTcnQR7AnwAPxQMbnhWRIhGpVEolFE7rBKPG0DgFdzVKqUCv/qLQlcefu66kvfnktoX123tzg9eO/InU4vGV9ctgcSnAohjVU8vo1kTOAm+axg7BSCdmJgNt/X4+HH8tIaNqNUi4Lnwa2DZiQ8OglLdzRMARqUBze89PXPbM3y2cfOSJzSg7yZoT8HiLq/z5b7kxr2jNvNzgB094c699Ehm3k8RyIG36zMOPRhPsaplSagH2FHeNiKwY8P5gfyASXsl1wki2UbcAt1LTlti0KV0IyMyXH75x4c6vtXpikVd06xmIeArL/eNWLM8rumNBbvAjHb68pVuQwq3AUH9YHkv03v1PzAB9J2b6c5g3VoSrwj6LmhDGqC5mziGlNeHWUAQ7Wmcuf+quSePPHRjNQkxaEU+g2BdYvCyv6IPX5xZ9LOILrHxGPEXPYMeggz3aJRTkICL5fcfu+p2YGRjN9Ahwa3z1dzFwLtHnU9D/jAqwAzgBpGNPLKO44jXlhAPVg+KNRQLXPv+1FUcrlz7XctVfz0CkRLemoXhzgEXz1mjPCy99+kffSdRIiZyY2QjcDOzHzmh4+6g06gp46E/thtr/BOp063Ab37/HeinX4irdOkaiO7fo2LaF9UcjOYWj2jvUzF1r1q36mm4RfThh6gvwU90C3IYnpqwci5BuHYmQ13O24oan6+dXvvb0ZpSK6NaTAAqH/U46xaiPMYpUFwaYcoKD4qLzvAJS8+IPb1yw6xv7JWYdGPkTWnluzbpVh3SL6I8jjBquC8eA/9Ctw03UtKkTujWMhaJzr9SseOqussKOQ0+O3FobjvtddIRR43wXO/jBkACz21Svbg1jxRvrzb9ux78uv+rlh59BqbO69QzgPPBD3SIG4hijhuvCB4H/1a3DLYT6FYRyK1VHnliy5LnPd/ojF3bp1tKP769Zt+qibhEDcYxR4zyoW4BbKOlg1JkCnUig+8ykG7bUzys/tnUzKvEk4inkAd0CBsNpRv0VcFK3CKeTE1FdvtgbolxcjaA8c1o23HjN7vtelJilM0PlU2vWrRo2Y70uHGXUcF24Fwc+yDuN6cc4KA77f5cMSs6+NGf5lrtL8i8ceUqTBEeOpuDM/9n/huZalE5n9qFhq4S5Gl+0p3DR9n+54cr9P38apc6lsevDwM/S2N+ocJxRw3XhEzj4L5sTqGlTiZ7ocC1TDv/f0sVbGzp8kc505Sv66pp1qxy7ku44o8b5KmZUHZIpJ5S2rHzpZFzXqarlW+6eU3Zi52ZUSv84HQO+k8L7XzaONGp8VL1ftw6nMr5z7HVm3IagvHP3fffGq/d8e6/EoqmKXvvqmnWruhPSI+IVkedF5NFB3lspIufieZN2icjnkyXQkUaN81XAcftZusnvUue8ilQWQ3IkE9qb592w5bOF4zqPPZ3kWx9hdI9anwCah3n/SaXUNfHrS8O0GxWONWq4LnwS+LZuHU7jqiMqawts+aNdwcVbv7x0+qu/3oJSF0b+REJ8eRSjaRWwGg37/Y41apx7gA7dIpzE7ENpXQl1JKFDjy1btPXLp71W1+XueTYD3xtF+3uBuxk+1HWJiOwWkf8RkTmXI64/jjZquC58CkjaPD8TmHnYAQeIHUB+1/Gpy7fcPbP01J5NKDXWGPE1a9atSujYnYi8AzihlNoxTLO+SuJXA9/EriSeFBxt1DjfxM4CYQAmn05NQSg34lEx37wX1q+sfWH9HlR0tPmjfrxm3arfj6L9MuCdItIK/ARYJSI/6N9AKXVexafkSqmNgF9EkpJC1fFGDdeFo8CHgYzfO0yEgm796UGdxsTT4WuWb6kPBLpOPpvgR84DnxlNH0qpzymlqpRSIeDdwO+UUm/ISS0iFRLPx5JoJfFEcbxRAcJ14R3YI2tWU3JeHZc0F0lyC36rs2jJcw2LQ63/8xRKjbRb8IU161YlJYOjiNzRlxsJu5L4CyKyG7tS4YiVxBPuxwk5kxKhdkNtAbAPMicYfbQs3Rfb+clfxdyUd0gLF8ZVHtix8K7uqDd3sCz5e4AFa9atctUMzRUjKkC4LnwB+JhuHTqZfUiZFfAEKOh8bdryp+66ouTMvk28cSSKAH/jNpOCi4wKEK4LPwL8t24duphxVE9BKDfiUdGca/Z8e+Xcfd99HhU7Fn/5i2vWrXLlwqSrjBrnQ7yxhkfWUNGOY3PjOpWyk88vuOHp+pyCjsM/ABp16xkrrnlG7U/thtplwCackUA8PSilHm6MdgmM0y3FhZwFrqlpaXZtVJcbR1TCdeEtwBd060gnk87QZkw6Zj7gZpOCS40a5yvAm04wZCqzHFYQykXcW9PS7Pp1jbQYVUTyRGRrPAZyr4h8cZA2ozoiFK4LK+wiyPtTpdtJzDmoEgocN7yB3wB36haRDNI1ovYAq+IxkNcAN8UrWg1kVEeEwnXhc8AtZMFxuCuOKddkxXcILcC7alqaXbcVMxhpMaqy6TuW5I9fSVnFCteF9wLvIbHCtK6l9DwTdWtwEWeAP65pac6Yk0Zpe0aNn4zfhV1i8bdKqecGaTamI0LhuvCvgfeTJPM7DW9URfwWU3XrcAkW8Fc1Lc0Z9UiUNqMqpaJKqWuwKy1fLyJzBzS5rCNC4brwQ8CnkiDVcUw9QavYsxDD8MSAupqW5v/TLSTZpH3VV9m1RjYBNw14/bKPCIXrwmuBLydHqXOYfUiZpOQjo4AP17Q0/0i3kFSQrlXfiSJSFP8+ALwF+2G/f5ukHBEK14U/T4alcKlpc0VNUd18qqalOWNLoqQrsqcS2CAiXmwD/lQp9eiA0ul/AXxERCygi8s7IvS3QAn2IpPrCR1XAd0aHM4/1LQ0r9UtIpW4MoQwEWo31Pqx8+G8b6S2TudH/2od8sXMgfEh+EJNS3PSsv05FTdHJg1LuC4cAW7FTjvqWnJ71UVvBhWESiIx4CPZYFLIYKOCHb0Urgt/FjsXqyuLJF/5mjooILp1OIwe7C2YdbqFpIuMNmof4brwfdjPqz26tYyW2YfUGd0aHMZ54O2ZEL87GrLCqADhuvBPsbeEXBWtMqvNJHXrRxuwsqaleTTZAzOCrDEqQLguvAlYARzQqyRxqk+qQt0aHMLvgIU1Lc3P6xaig6wyKkC4LrwHmI+Da2H2Z3wXVbo1OICvAW+raWnO2sCPjN2eSYTaDbV3AN8A8nRrGYzCTnXmu2uj2Zx+5SLw/pqW5od1C9FN1o2o/QnXhdcBi4AXdWsZjKuOqEO6NWhkB3C9MalNVhsVLk2FFwIP6dYykDkH1XndGjRgAQ3A4pqW5n2atTiG7EkONgzhuvBFoK52Q+1j2FPhcs2SAJh5RGXb/uk+4NaalmZXpvRMJVk/ovYnXBf+MTAT+5id9m2RyjMU6daQJiLYJTYXGpMOTlYvJg1H7Yba+cD9wGApY9LCw1+xzgkZX73tceATNS3NLSO2zGLMiDoE4brw88BS4APAqXT3X3pOvZbhJn0VuKWmpfmPjElHxhh1GOKxwt/Fng5/izSGIM5qU0fS1VeaOQf8PTC7pqX5V7rFuAUz9R0FtRtqK4G7sOu1pjQZ9oc3Rjf/4W51Yyr7SDPtwFpgbU1L81nNWlyHMeoYqN1QWwp8GlgDjE9FH/c8aG2ZepJlqbh3mjmDvZJ+X01LczZuNyUFY9TLoHZDbRHwcexjdEmNIHroa1ZzXoTB6nu6hQPYi3Hra1qaTbnIy8QYNQnUbqjNB/4cuB24kcs8PypKxX7SGO0Vh4Y2DkMMexX3fqCppqXZlWeAnYgxapKp3VAbAuqws0tMH8s9qk6q1q8/GA0lUVaqOQD8APiu24sxORVj1BRRu6FWgOXAbdijbcLPsm/dGXvug7+JLUqRtGTxCvBfwM9MkELqMUZNA7Uban3YgRNvBd4GXAcMWT38E7+MblrWrFamR13CRLGTpD+Obc5deuVkF8aoGogvQq3ideO+YYq8dp31bGW7voioODFgN/D7+PXE5a7axtPFbgeOKKXeMeA9wd6+uRnoBG5TSu28nP4yCROUr4FwXfgs8PP41bc/Ox+70t384EUmYJ8iSdf/ny5gL7Yx98SvXSnY7/wE0MzgjwFvB2bEr0XAA/GvBsyI6liaZ9XkYP/SXglMil+V/b4vBQLYK8O5vHkqHcUemfqu88AR4PCAqxV4JdUrtCJSBWwA/hn49CAj6npgk1Lqx/GfXwRWKmUKOIMZUR1LTUtzL/YotzeR9s2zanzYpvUCXfHPO4l7gbuBoXJATcZOXtbH4fhrxqgYo2YMNS3NFnBhxIYaEJF3ACeUUjtEZOVQzQZ5zUz34pigfEM6WAa8U0RagZ8Aq0TkBwPaHIY3VASoAo6mR57zMUY1pByl1OeUUlVKqRDwbuB3SqmBNYEeAW4Vm8XAOfN8+jpm6mvQxoBqfhuxt2b2Yy9+3a5RmuMwq74GgwswU1+DwQUYoxoMLsAY1WBwAcaoBoMLMEY1GFyAMarB4AKMUQ0GF2CMajC4AGNUg8EFGKMaDC7AGNVgcAHGqAaDCzBGNRhcgDGqweACjFENBhdgjGowuABjVIPBBRijGgwuwBjVYHABxqgGgwswRjUYXIAxqsHgAoxRDQYX8P8BGBzxLz78tBMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nzal = len(W[W == 2.0])\n", + "\n", + "zal3 = len(W[W == 3.0])\n", + "\n", + "zal35 = len(W[W == 3.5])\n", + "\n", + "zal4 = len(W[W == 4])\n", + "\n", + "zal45 = len(W[W == 4.5])\n", + "\n", + "zal5 = len(W[W == 5])\n", + "\n", + "zal55 = len(W[W == 5.5])\n", + "\n", + "plt.figure()\n", + "plt.pie([nzal,zal3,zal35,zal4,zal45,zal5,zal55], labels=['2.0','3.0','3.5','4.0','4.5','5.0','5.5'])\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Zadanie domowe !\n", + "\n", + "## Badanie procesów ładowania i rozładowania kondensatora\n", + "\n", + "Na podstawie instrukcji:\n", + " \n", + "https://pracowniefizyczne.up.krakow.pl/wp-content/uploads/sites/3/2018/02/E9_Kondesator_instrukcja.pdf\n", + "\n", + "Narysuj wykresy napięć ładowania i rozładowania kondensatora w czasie dla wybranych wartości C i R:\n", + "\n", + "- $C=470\\mu F$\n", + "- $C=940\\mu F$\n", + "- $R=6,25k\\Omega$\n", + "\n", + "Dobierz zakres czasu tak, aby wykres był czytelny. Przyjmij napięcie zasilania $U_Z = 6V$\n", + "\n", + "Pamiętaj, o dodaniu do wykresu wszystkich niezbędnych elementów!\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvI0lEQVR4nO3dd3wUdf7H8dembUIqaYQSQu9NQOmggiDNxqEiInqKDQti5X5nw1Msp6KeoqgHyKF4oODZQERpCkgRKdJ7SQgtCenJ7vz+mGRhSYD02STv5+Oxj5357uzMZ4cN+eRbbYZhGIiIiIh4IC+rAxARERE5HyUqIiIi4rGUqIiIiIjHUqIiIiIiHkuJioiIiHgsJSoiIiLisZSoiIiIiMdSoiIiIiIeS4mKiIiIeCwlKlKtTJ8+HZvNxtq1a60O5bwuv/xyLr/88jI9p81m47nnnivTc1a0svwM+/btw2az8c9//rNMzlda+d/Lffv2WR2KiMdRoiKW++9//4vNZmPevHkFXmvfvj02m42ff/65wGv169ene/fuFRGiiJzlyJEjPPfcc2zYsMHqUKQaUKIiluvZsycAK1ascCtPSUlh8+bN+Pj48Msvv7i9dvDgQQ4ePOh6r1R9GRkZ/P3vf7c6DMFMVJ5//nklKlIhlKiI5erUqUPDhg0LJCorV67EMAyGDx9e4LX8/YpMVNLS0irsWlKQv78/Pj4+Voch5Ug/Y1IYJSriEXr27Mnvv/9ORkaGq+yXX36hdevWDBw4kFWrVuF0Ot1es9ls9OjRg9TUVAIDA3n44YcLnPfQoUN4e3szadKk81771KlTXHbZZdSrV4/t27cDcPvttxMUFMTu3bsZNGgQwcHBjBw5EgCn08nkyZNp3bo1/v7+1KpVi3vuuYdTp065nXft2rUMGDCAyMhIAgICaNiwIX/961+LfE927drl2v7nP/9J9+7diYiIICAggE6dOjF37twC78nKyuKRRx4hKiqK4OBgrrnmGg4dOlTo+X///XcGDhxISEgIQUFB9O3bl1WrVrleT0pKwtvbm7fffttVdvz4cby8vIiIiODshdfvu+8+YmJiXPvLly9n+PDh1K9fH7vdTmxsLI888ojbvy+cuc+HDx/muuuuIygoiKioKB577DEcDofbsef2Udm/fz/3338/zZs3JyAggIiICIYPH17ifh6GYXD33Xfj5+fHl19+CUBubi4vvPACjRs3xm6306BBA/72t7+RlZXl9t4GDRowZMgQVqxYwWWXXYa/vz+NGjXik08+KXCdLVu2cOWVVxIQEEC9evX4xz/+4fbdPtv3339Pr169CAwMJDg4mMGDB7Nlyxa3Y4pzD2fPnk2nTp0IDg4mJCSEtm3b8tZbb7leP3nyJI899hht27YlKCiIkJAQBg4cyB9//OE6ZsmSJVx66aUA3HHHHdhsNmw2G9OnT3cdM2fOHDp16kRAQACRkZHceuutHD58uNC4C/sZK+r3R6oHJSriEXr27ElOTg6rV692lf3yyy90796d7t27k5yczObNm91ea9GiBREREQQFBXH99dfz+eefF/iP+bPPPsMwDNd/gOc6fvw4V155JUePHmXp0qU0b97c9Vpubi4DBgwgOjqaf/7znwwbNgyAe+65h8cff5wePXrw1ltvcccddzBr1iwGDBhATk4OAImJifTv3599+/bx1FNP8c477zBy5Ei3ROBCtmzZQocOHdi6dSsAb731FpdccgkTJ07kpZdewsfHh+HDh/Ptt9+6ve+uu+5i8uTJ9O/fn5dffhlfX18GDx5c6Pl79erFH3/8wRNPPMHTTz/N3r17ufzyy13/BmFhYbRp04Zly5a53rdixQpsNhsnT57kzz//dJUvX76cXr16ufbnzJlDeno69913H++88w4DBgzgnXfe4bbbbisQi8PhYMCAAURERPDPf/6TPn368PrrrzN16tQL3qM1a9bw66+/cvPNN/P2229z7733snjxYi6//HLS09OLcJfdY7j99tv55JNPmDdvHjfccIPrfj7zzDN07NiRN998kz59+jBp0iRuvvnmAufYtWsXf/nLX7jqqqt4/fXXqVmzJrfffrtbYpGQkMAVV1zBhg0beOqppxg3bhyffPKJW7KQb+bMmQwePJigoCBeeeUVnn76af7880969uxZIBkryj1ctGgRI0aMoGbNmrzyyiu8/PLLXH755W7Nqnv27GH+/PkMGTKEN954g8cff5xNmzbRp08fjhw5AkDLli2ZOHEiAHfffTczZ85k5syZ9O7dGzA7Bt94442uPxDGjBnDl19+Sc+ePUlKSnKL+3w/Y8X5/kg1YIh4gC1bthiA8cILLxiGYRg5OTlGYGCgMWPGDMMwDKNWrVrGu+++axiGYaSkpBje3t7GmDFjXO9fuHChARjff/+923nbtWtn9OnTx7U/bdo0AzDWrFljxMfHG61btzYaNWpk7Nu3z+19o0ePNgDjqaeecitfvny5ARizZs1yK1+wYIFb+bx581zXKY6MjAyjdevWRs2aNY3Fixe7ytPT092Oy87ONtq0aWNceeWVrrINGzYYgHH//fe7HXvLLbcYgPHss8+6yq677jrDz8/P2L17t6vsyJEjRnBwsNG7d29X2dixY41atWq59sePH2/07t3biI6ONqZMmWIYhmGcOHHCsNlsxltvvXXeeA3DMCZNmmTYbDZj//79rrL8+zxx4kS3Yy+55BKjU6dObmXnfobCrrFy5UoDMD755JMCr51t7969BmC89tprRk5OjnHTTTcZAQEBxsKFC13H5N/Pu+66y+29jz32mAEYP/30k6ssLi7OAIxly5a5yhITEw273W48+uijrrJx48YZgLF69Wq340JDQw3A2Lt3r2EYhnH69GkjLCzM7TtuGIaRkJBghIaGupUX9R4+/PDDRkhIiJGbm3ve+5KZmWk4HI4C98put7udf82aNQZgTJs2ze3Y7OxsIzo62mjTpo2RkZHhKv/mm28MwHjmmWcKxH3uz5hhFP37I9WDalTEI7Rs2ZKIiAhX35M//viDtLQ016ie7t27u/7yW7lyJQ6Hw61/Sr9+/ahTpw6zZs1ylW3evJmNGzdy6623FrjeoUOH6NOnDzk5OSxbtoy4uLhC47rvvvvc9ufMmUNoaChXXXUVx48fdz06depEUFCQa3RSWFgYAN98842rluVijh49Sq9evdiyZQvt2rXjyiuvdL0WEBDg2j516hTJycn06tWL9evXu8q/++47AB566CG3844bN85t3+Fw8MMPP3DdddfRqFEjV3nt2rW55ZZbWLFiBSkpKQD06tWLo0ePuprEli9fTu/evenVqxfLly8HzFoWwzDcalTOjjctLY3jx4/TvXt3DMPg999/L/DZ7733Xrf9Xr16sWfPngvcLfdr5OTkcOLECZo0aUJYWJjbfbmQ7Oxshg8fzjfffMN3331H//79Xa/l38/x48e7vefRRx8FKFCb1apVK7d7EBUVRfPmzd0+x3fffUfXrl257LLL3I47t8Zv0aJFJCUlMWLECLfvmbe3N126dCl0FNzF7mFYWBhpaWksWrTovPfDbrfj5WX+WnA4HJw4cYKgoCCaN29epHu6du1aEhMTuf/++/H393eVDx48mBYtWhS4Z1DwZwyK//2Rqk2JingEm81G9+7dXX1RfvnlF6Kjo2nSpAngnqjkP5+dqHh5eTFy5Ejmz5/vqvafNWsW/v7+DB8+vMD1Ro0aRWJiIkuXLqVu3bqFxuTj40O9evXcynbu3ElycjLR0dFERUW5PVJTU0lMTASgT58+DBs2jOeff57IyEiuvfZapk2bVqBvw9kCAwPp378/3bp1K/DaN998Q9euXfH39yc8PJyoqCimTJlCcnKy65j9+/fj5eVF48aN3d57dnMWwLFjx0hPTy9QDmbC6HQ6OXjwIIDrF+/y5ctJS0vj999/p1evXvTu3duVqCxfvpyQkBDat2/vOs+BAwe4/fbbCQ8Pd/WZ6NOnD4BbzGB2ko2KinIrq1mzZoE+P+fKyMjgmWeeITY2FrvdTmRkJFFRUSQlJRW4xvlMmjSJ+fPnM3fu3AJz1+Tfz/zvYL6YmBjCwsLYv3+/W3n9+vULnP/cz7F//36aNm1a4Lhz/y127twJwJVXXlnge/bDDz+4vmf5inIP77//fpo1a8bAgQOpV68ef/3rX1mwYIHbe5xOJ2+++SZNmzZ1u6cbN24s0j3NvyeFfbdatGhR4J4V9jMGxfv+SNWnLvTiMXr27MnXX3/Npk2bXP1T8nXv3p3HH3+cw4cPs2LFCurUqeNWGwBw22238dprrzF//nxGjBjBp59+ypAhQwgNDS1wrRtuuMHVN+B8HW3P/usyn9PpJDo62q3m5mz5vyxsNhtz585l1apVfP311yxcuJC//vWvvP7666xatYqgoKAC7w0KCuLFF18s8Atz+fLlXHPNNfTu3Zv33nuP2rVr4+vry7Rp0/j0008LjaOs5I/IWrZsGQ0aNMAwDLp160ZUVBQPP/ww+/fvZ/ny5XTv3t3tL/GrrrqKkydP8uSTT9KiRQsCAwM5fPgwt99+e4GOo97e3iWK7cEHH2TatGmMGzeObt26ERoais1m4+abbz5v59RzDRgwgAULFvDqq69y+eWXu9UC5LPZbEU61/k+h3FWp+Oiyo9/5syZbp2U8507+qko9zA6OpoNGzawcOFCvv/+e77//numTZvGbbfdxowZMwB46aWXePrpp/nrX//KCy+8QHh4OF5eXowbN67I97Q4CvsZK+73R6o+JSriMc6eT+WXX35xa7Lo1KkTdrudJUuWsHr1agYNGlTg/W3atOGSSy5h1qxZ1KtXjwMHDvDOO+8Ueq0HH3yQJk2a8MwzzxAaGspTTz1VpBgbN27Mjz/+SI8ePdyqp8+na9eudO3alRdffJFPP/2UkSNHMnv2bO66664iXQ/giy++wN/fn4ULF2K3213l06ZNczsuLi4Op9PJ7t273f6izW+2yRcVFUWNGjUKlANs27YNLy8vYmNjXWW9evVi2bJlNGzYkA4dOhAcHEz79u0JDQ1lwYIFrF+/nueff951/KZNm9ixYwczZsxw6/x4oSaHkpg7dy6jR4/m9ddfd5VlZmYW6LB5IV27duXee+9lyJAhDB8+nHnz5rmSgPz7uXPnTlq2bOl6z9GjR0lKSjpvc+GFxMXFuWpLznbuv0V+rVh0dDT9+vUr9nXOx8/Pj6FDhzJ06FCcTif3338/H3zwAU8//TRNmjRh7ty5XHHFFXz88cdu70tKSiIyMtK1f77kLf+ebN++3a3pMr+sKPesor4/Unmo6Uc8RufOnfH392fWrFkcPnzYrUbFbrfTsWNH3n33XdLS0s47f8qoUaP44YcfmDx5MhEREQwcOPC813v66ad57LHHmDBhAlOmTClSjDfeeCMOh4MXXnihwGu5ubmuX5KnTp0q8Jd0hw4dAC7Y/FMYb29vbDab24imffv2MX/+fLfj8j/r2cOJASZPnlzgfP379+err75yGz1y9OhRPv30U3r27ElISIirvFevXuzbt4/PP//c1RTk5eVF9+7deeONN8jJyXHrm5H/1/3Zn98wjEJHtpSGt7d3gXv8zjvvFBj5dTH9+vVj9uzZLFiwgFGjRrn+Ys9Phs+9f2+88QZAoaOpLmbQoEGsWrWK3377zVV27NixAjV0AwYMICQkhJdeeqnQPk7Hjh0r9rVPnDjhtu/l5UW7du2AM9/Jwu7pnDlzCgwtDgwMBCiQFHbu3Jno6Gjef/99t+/5999/z9atW4t0zyrq+yOVh2pUxGP4+flx6aWXsnz5cux2O506dXJ7vXv37q6/ns+XqNxyyy088cQTzJs3j/vuuw9fX98LXvO1114jOTmZsWPHEhwcXGjH27P16dOHe+65h0mTJrFhwwb69++Pr68vO3fuZM6cObz11lv85S9/YcaMGbz33ntcf/31NG7cmNOnT/Phhx8SEhJSaG3QhQwePJg33niDq6++mltuuYXExETeffddmjRpwsaNG13HdejQgREjRvDee++RnJxM9+7dWbx4sdt8LPn+8Y9/sGjRInr27Mn999+Pj48PH3zwAVlZWbz66qtux+YnIdu3b+ell15ylffu3Zvvv/8eu93umlcDzL4IjRs35rHHHuPw4cOEhITwxRdfXLTPSXENGTKEmTNnEhoaSqtWrVi5ciU//vgjERERxT7Xdddd52oGCQkJ4YMPPqB9+/aMHj2aqVOnkpSURJ8+ffjtt9+YMWMG1113HVdccUWxr/PEE08wc+ZMrr76ah5++GECAwOZOnUqcXFxbv+WISEhTJkyhVGjRtGxY0duvvlmoqKiOHDgAN9++y09evTgX//6V7Gufdddd3Hy5EmuvPJK6tWrx/79+3nnnXfo0KGDq8ZoyJAhTJw4kTvuuIPu3buzadMmZs2aVaCZtXHjxoSFhfH+++8THBxMYGAgXbp0oWHDhrzyyivccccd9OnThxEjRnD06FHeeustGjRowCOPPHLROCvq+yOViDWDjUQKN2HCBAMwunfvXuC1L7/80gCM4ODgCw6xHDRokAEYv/76a4HXzh6enM/hcBgjRowwfHx8jPnz5xuGYQ6dDAwMPO81pk6danTq1MkICAgwgoODjbZt2xpPPPGEceTIEcMwDGP9+vXGiBEjjPr16xt2u92Ijo42hgwZYqxdu/ai96BPnz5uQ6oNwzA+/vhjo2nTpobdbjdatGhhTJs2zXj22WeNc3+EMzIyjIceesiIiIgwAgMDjaFDhxoHDx4sMLQ3P8YBAwYYQUFBRo0aNYwrrrii0HtmGIYRHR1tAMbRo0ddZStWrDAAo1evXgWO//PPP41+/foZQUFBRmRkpDFmzBjjjz/+KDCk9Xz3ubDPdu5nOHXqlHHHHXcYkZGRRlBQkDFgwABj27ZtRlxcnDF69OhCP0e+s4cnn+29994zAOOxxx4zDMMcJv/8888bDRs2NHx9fY3Y2FhjwoQJRmZmptv74uLijMGDBxe4TmH/lhs3bjT69Olj+Pv7G3Xr1jVeeOEF4+OPP3Ybnpzv559/NgYMGGCEhoYa/v7+RuPGjY3bb7/d7XtU1Hs4d+5co3///kZ0dLTh5+dn1K9f37jnnnuM+Ph41zGZmZnGo48+atSuXdsICAgwevToYaxcubLQz/HVV18ZrVq1Mnx8fAr8u37++efGJZdcYtjtdiM8PNwYOXKkcejQIbf3X+hnrKjfH6kebIZRgp5eIh7s+uuvZ9OmTYXWJIiISOWiPipSpcTHx/Ptt98yatQoq0MREZEyoD4qUiXs3buXX375hY8++ghfX1/uueceq0MSEZEyoBoVqRKWLl3KqFGj2Lt3LzNmzCh07gkREal81EdFREREPJZqVERERMRjKVERERERj1WpO9M6nU6OHDlCcHBwkdfjEBEREWsZhsHp06epU6dOgfWezlWpE5UjR464rUkiIiIilcfBgwcLXUH7bJU6UQkODgbMD3r22iQiIiLiuVJSUoiNjXX9Hr+QSp2o5Df3hISEKFERERGpZIrSbUOdaUVERMRjKVERERERj6VERURERDyWEhURERHxWEpURERExGMpURERERGPpURFREREPJYSFREREfFYSlRERETEYylREREREY9leaJy+PBhbr31ViIiIggICKBt27asXbvW6rBERETEA1i61s+pU6fo0aMHV1xxBd9//z1RUVHs3LmTmjVrWhmWiIiIeAhLE5VXXnmF2NhYpk2b5ipr2LChhRGJiIiUDcMwMAww8rcBwwCnYeS9DgYFj8l/zdzIfzLOOq/bSxj55zv3vWe/r8B7in7eAF9vIoLsRf/gZczSROV///sfAwYMYPjw4SxdupS6dety//33M2bMmEKPz8rKIisry7WfkpJSUaGKiHgsp9Mg2+Ekx+EkO9dJrtMwHw5z2+E0yHXkPTudec9m2dn7Z56druNznAaOs89z7nFOA6fTwGmAw2lgGHnbRt6209x25v3SdjgLbjsN85ei4+zts15znr2ddy6n86ztvGPOTQhcSYBxnnLyfzm7JwvOs46nkETj7PeTF9O5x1Ql17Svw9sjLrHs+pYmKnv27GHKlCmMHz+ev/3tb6xZs4aHHnoIPz8/Ro8eXeD4SZMm8fzzz1sQqYhI4QzDICvXSWaOg8ycvOdcBxnZefu5DrJyHGSc/XqOk4wcszwzx0FWrjMv0TDIznXkPTvdko8zz+b1cs5JTEQKY7PlPbv2befs57/ufuDZr/t6W9ud1WYY1uV+fn5+dO7cmV9//dVV9tBDD7FmzRpWrlxZ4PjCalRiY2NJTk4mJCSkQmIWkcrNMAxSs3JJyczldGYOaVkO0rJyScvKJTUrl/RsB6l5+2dv57929nZ6di5ZuU6P+wvaywY+3l74eNnw9rLh6+2Ft5fNtX/m2Svvdfd9H++Cx7mXnTl3fpnNZsPLBt5nb9tseHnZsOVv5+172Siw7W0zj/Oy2fLOcWbby2b+gjXPl/de1/nMfRuY1yL/l695DnM/7xx5ZeQdk7/vtl2c99vOXO/s91PgfGfej+t6hb8f1/XPJA9FTjbyNyqBlJQUQkNDi/T729Ialdq1a9OqVSu3spYtW/LFF18Uerzdbsdut66dTEQ8R1aug1NpORxPzeJUejYpGbkkZ+S4HimZec9nl2XkkJKZi6OcaiC8vWz4+3jh7+ud9zizHZC3b/f1xt/H3A7Ie83u44Wvjxd+3vnPNvx8vPD1PlNmz3vOL/PzseHn7Y2vj+2s93m5khKRqsLSRKVHjx5s377drWzHjh3ExcVZFJGIWMUwDFIycjl6OpOE5EyOp2ZxMi2bE2nZnDhr+2RaNidTszmdlVuq6/l5exHs70Og3XwE2b2p4edDkN2HQLdtcz/Q76xtuw+Bfj7U8PPGflbCYXUVuUixGAbkZEB2GmSn5j2nQfbps7bTILwhNOlnWZiWJiqPPPII3bt356WXXuLGG2/kt99+Y+rUqUydOtXKsESkjGXlOohPyiQhJZOjKZkkpmQVup2V6yzWeb29bIQH+hFew4/QAF9CAnwJzXuEBPi4ts99LTTAF39f73L6tCLlzJELWSmQdfqcR8o5z+eWn/XIT06MIvzMtb2x+iYql156KfPmzWPChAlMnDiRhg0bMnnyZEaOHGllWCJSTJk5Do4kZXDoVAaHkzI4dCqdQ6cy8h7pJJ7OKnI/jrAavtQK9icq2G4mIYF+RAb5ER5o7kcEmWURgX6E+PvipWYOqWycDshMhoxTkJkEGUkXeE52TzQyUyA3o+xj8g0Ev/xHkPlsz3uu26nsr1cMlnamLa3idMYRkdLJdTg5dCqDvSfS2Hssjb3HzzyOJGdcNBHx9/WiTmgA0SF2aoX4n/XI2w/2JzrErpoOqTycTshKhvSTkH4C0o6bz/mPAolIsvmcVUZTa/j4gz34rEdI3iO4kEcI+Oe95heU95yXmPjWAK+K/bmrNJ1pRcTzZOc62XM8le0Jp9mWcJqdR0+z53gaB06kX3AYbA0/b+rVDKBezRrUDQtwbZvPAYQH+lWqUQlSDeVkQGpiXqJx0j3pSD8B6cfPKT8JhqPk1/MNhIAw8A87z3Ooue0feibh8M9LRvyCwMev9J+5ElCiIlJNGYbBoVMZbE84zfajZlKyPSGFPcfSzpuQ2H28aBgZSIOIQBpGBdIwMpBGkYE0iAwkQomIeKLcbEhLNBOQ1MS87aOQeizvOfHM6yWt6fALhhrhEBgJNSLMR0A4BNQ8fyLiH1ptEo3SUqIiUg0YhsGR5Ew2HUpi46FkNh1OZuOhZJIzcgo9PtjuQ/OYYJrFBNO8VjCNo4JoGBVI7RB/9QkRz+DIhdQESImHlMNwOu85Jd49Ack4VbzzetvzEo7wM0lHjfwE5OyyiDNlPpo2ozwpURGpgtKzc9lwMIl1+06x7sApNh1K5kRadoHjfL1tNI4KokVMMM1jQmgeE0TzmBDqhPqrdkSsk51mJhynj0DKWY+zk5G0xKKNWAHw8oHAaAg6+1HrnLJa5rM95MwMauIRlKiIVAGJpzNZu+8Ua/edYt3+k2w5klKg+cbHy0bzmGDa1Qulbd0w2tULpVmtYPx8NPeHVCDDMGs5kg9C0kFIOpC3feDMIzOpaOfy8oHg2hBSJ++5LoTUhqAY9wTEPwy89D2vrJSoiFRCKZk5rNp9gl93n+CXXcfZmZha4JiYEH86NahJ57iaXFK/Ji1igjWiRipGZjKc3Aun9haSjBw0JxS7GL+gggnI2dshdc0mGSUgVZ4SFZFKINfhZO3+UyzfeYxfdp1g46Ekzq4wsdmgea1gLm0QTucGNekUV5O6YQFqvpHykV8rcnJP4Y/0Exc/R2A0hMVCWH0IzXvOf4TUNUe3iKBERcRjJaVns3THMRZvTWTJ9kRSMt2njG8YGUj3xhH0aBJJt0YR1AzUCAIpYxlJcHwnHN9xTjKy15w/5EICo6Bmw7MSkPykpD6E1gO/GhXyEaTyU6Ii4kH2n0hjweYEFm9LZN3+U26L59Ws4UufZlH0aBJJjyaR1AkLsDBSqTKcTkg5ZCYj+UlJ/nPq0Qu/N6QuhDcy14Kp2TBvO2/fHlwx8UuVp0RFxGIHT6bz7aZ4vt0Yz6bD7n+lNq8VzJUto+nXMpoOsTW1Kq6UnNMJyQfg6J+QuAUSt5nJyIldkJN+/vcF14HIphDRxD0RqdkAfJUsS/lToiJigfjkDL7dGM83G+PZcDDJVe7tZaNbowiualWLK1tEExuu6nEpgbQTZjJy9E9IzH9sNRehK4yXD4Q3hqhmEHn2o6lqRsRySlREKkhmjoOFWxKYs/YQv+w+7lobx2aDrg0jGNK+Nle3jiEiSJNHSRE5HXBiNyRshPgNkLDZTErO12Tj5QtRzSG6FUS3NLcjm0PNOPD2rdDQRYpKiYpIOdt8OJk5aw8yf8MRt5lgL21QkyHt6jCwbQzRwf4WRiiVgiMHjm2H+D/OPBI2QU5a4cfXbJCXkLSCWq0gujVENFZCIpWOEhWRcnA6M4d5vx/m8zUH2XLkzPohdUL9+UvnWIZ3qqdmHTk/Ry4c2wqH1p5JSo5uAUdWwWN9AiCmLdRubz7Xag1RLcAeVPFxi5QDJSoiZWjPsVQ+WbmfOWsPkpZtrqrq5+1F/9a1uLFzLD2aRKpDrBSUEg+H18KhNXBoHRxZX3gHV3uImZCc/YhoAl6ayE+qLiUqIqVkGAbLdx7n37/sZcn2Y67yxlGB3No1jus61NUcJ3JGTgYc2eCemKQcKnicPQTqXAJ1O55JSsIaaCZWqXaUqIiUkMNp8N2meN5futvVvGOzwZXNo7m9RwN6NonUzLAC6SfhwErY/6v5HP8HON0n78PmZfYlqdcZ6naGepeao26UlIgoUREprqxcB3PXHWLqsj3sP2FWzwf4enPTpbHc3r0BDSIDLY5QLJV00D0xObat4DFBtcxkJD8xqXOJ+pSInIcSFZEiys51MnfdIf71006OJGcC5myxo7s3YHS3Bmreqa5SjsDeZbBnKexbYU6qdq7I5hDXDep3h/pdzankVdsmUiRKVEQuIsfhZN76w7z9004OncoAoFaInXt6N+bmy2Kp4acfo2ol/aSZmOQ/Tux0f93mbfYniesO9buZj8AIa2IVqQL0P6zIeRiGwQ9/HuWV77ex57g5V0VkkJ2xVzRmxGX18ffVSItqIScT9v8Cu3+CvUvNSdU4e+lqL6jdARr1gQa9ILaLmnFEypASFZFCbDiYxIvf/smafacACA/0474+jbm1axwBfkpQqrwTu2HXj7Bzkdmck5vh/npUSzMxadgb4npAQJglYYpUB0pURM5yJCmDSd9v4+s/jgBg9/FiTK9G3NOnEcH+mtGzyspOh33LzyQnp/a6vx5cB5pcCY2uMGtNgmtZE6dINaRERQSzo+zHK/by9uKdZOQ4sNnghkvq8diAZtQO1QqxVVLKEdj+PWz/DvYud5/11cvX7PTa9Cpo0s8cOqzOryKWUKIi1d6vu47z9Feb2X3M7IdyaYOaPDu0NW3qhlocmZQpwzAX7Nv2HWz/Fo787v56aH1o2s9MTBr21qrBIh5CiYpUWydSs5j4zZ98tcFs5okM8mPCwJbc0LGuJmqrKhy55lwm27+Dbd9C0v6zXrSZc5m0GATNB5kTrOnfXcTjKFGRascwDL7dFM+zX23hRFo2XjYY1TWO8f2bExqgfiiVniPXHKWzZR5s/R+knzjzmrcdGl9hJibNB0JQtHVxikiRKFGRaiXxdCZPz9/Mwi1HAWgRE8yrf2lHu3ph1gYmpeN0mDPB5icnaWfWXCIgHJpdbdacNL4S/DRzsEhlokRFqo1vNh7h/+ZtJjkjBx8vGw9c2YT7L2+Cn4/WU6mUnA44sMpMTv78CtISz7wWUBNaXgOtrzdH6XjrvzqRyko/vVLlpWbl8tz/tjB3nblCbZu6Ibz2l/a0rB1icWRSIolb4Y/PYOMcOH3kTLl/GLQcaiYnDXuDt5rxRKoCJSpSpW04mMTDs39n/4l0vGzwwBVNeLBvU3y9VYtSqaQmwqa5sHG2ufpwPv9QaHFWcuKj9ZZEqholKlIlOZ0G7y/bzRs/7CDXaVA3LIA3b+rAZQ3DrQ5Niionw5zn5I/Z5kRshsMs9/KFZgOg3U3ms4/d2jhFpFwpUZEqJzkjh/Gfb2DxNrPPwuB2tXnp+rYa0VNZHPkd1k2HzfMgK/lMed3O0P5maH2DFvkTqUaUqEiV8ueRFO6btY79J9Lx8/Fi4jWtuenSWM2L4ukyU2DTHDNBSdh4pjw01qw5aX8zRDa1LDwRsY4SFakyvlx/iL/N20RmjpO6YQG8f2sn2tbT7LIeyzDg8HpYNw02fwE56Wa5tx1aXQsdbzMX/PNSfyKR6kyJilR6DqfBi99u5d+/mAvJ9WkWxeSbOlAzUB0rPVJmMmz8L6ybAUc3nSmPbAad7jBrT2qoL5GImJSoSKWWmpXLw5/97uqP8lDfpjzctyneXmrq8TjHtsNvU2HDZ5BjrquEt90csdPpdnMRQDXRicg5lKhIpXUkKYM7Z6xla3wKdh8vXr+xPUPa1bE6LDmb0wm7FsHq92H3T2fKI5tD5zvM/ieqPRGRC1CiIpXSpkPJ3DljDYmns4gM8uPD2zpzSf2aVocl+TJTYMMsswbl5J68Qhu0GAxd7jFni1XtiYgUgRIVqXSW7jjGvTPXkZHjoFmtID4efSmx4TWsDksAkg/D6ilm/5OsFLPMP9TsGHvpXVCzgaXhiUjlo0RFKpVvNh7hkc83kOMw6NU0kndHdiTEX/OjWO7on/DrO+YQY2eOWRbZ3Kw9aX+zFgIUkRJToiKVxqzV+/n7/M0YBgxpV5s3buygBQWtZBiwbzn88rbZDyVfXA/o8TA0uUpDi0Wk1JSoiMczDIP3luzmtYXbARjZpT4Tr22jkT1WMQzY+QMsfRUOrzXLbF7mgoDdH4Z6nayNT0SqFCUq4tEMw+DVhduZsmQ3YC4q+Gj/Zppp1gpOJ2z/Fpa9dmZhQB9/uORW6DYWwhtZG5+IVElKVMRjnZuk/H1wS+7qpV+GFc7pgD/nw7J/QuKfZplvIFx6J3R/EIKiLQ1PRKo2SxuQn3vuOWw2m9ujRYsWVoYkHsIwDP75w5kk5flrWitJqWhOJ2yaC+91hbl/NZMUewj0egzGbYL+LyhJEZFyZ3mNSuvWrfnxxx9d+z4+lockHuDNRTt492czSXl2aCtGd29gbUDViWHAjgXw0z/g6GazzD8Mut5vjuIJCLMyOhGpZizPCnx8fIiJibE6DPEgk3/cwds/7QLM5p47ejS0OKJqZM9S+OkFOLTG3LeHmM07Xe4F/xBrYxORasnyRGXnzp3UqVMHf39/unXrxqRJk6hfv36hx2ZlZZGVleXaT0lJqagwpYJ8tHwPk3/cCcD/DVKflApzaC0sngh7l5r7vjXM2pPuD2mKexGxlKWJSpcuXZg+fTrNmzcnPj6e559/nl69erF582aCg4MLHD9p0iSef/55CyKVijDv90P849utADw+oDljeitJKXcn98CPz8GfX5n73n7mCsa9HoXgWpaGJiICYDMMw7A6iHxJSUnExcXxxhtvcOeddxZ4vbAaldjYWJKTkwkJUbV0Zfbz9kTGzFhLrtPgjh4NeGZIKw1BLk/pJ81hxr99aM4ka/OCDrdAn6cgLNbq6ESkiktJSSE0NLRIv78tb/o5W1hYGM2aNWPXrl2Fvm6327Hb7RUclZS33w+c4v7/rCfXaXBthzo8PVhJSrnJzTIXClz2GmQmm2VNroKrJkKtVtbGJiJSCI9KVFJTU9m9ezejRo2yOhSpILsST3PH9DVk5Djo3SyK1/7SHi/NOFv2DAO2zDObeZL2m2W12phDjBtfaWloIiIXYmmi8thjjzF06FDi4uI4cuQIzz77LN7e3owYMcLKsKSCnEjN4vZpa0hKz6F9bBhTRnbU2j3l4egW+O4J2L/C3A+Kgb5PQ/sR4OVtbWwiIhdhaaJy6NAhRowYwYkTJ4iKiqJnz56sWrWKqKgoK8OSCpCV6+De/6zj0KkM4iJqMO32Swm0e1QFX+WXkQRLJpn9UAyHOd19j3HQ4yGtZiwilYalvxlmz55t5eXFIoZh8Pd5m1mz7xTBdh8+Ht2Z8EA/q8OqOpxO2DDLbOZJP26WtRwK/V+EmnGWhiYiUlz6E1Yq3IfL9zBn3SG8bPCvkR1pEl1wKLqU0OH18N1jcHiduR/ZDAa+on4oIlJpKVGRCrV461Emfb8NgGeGtKJPMzXzlYmsVPj5RVj9PhhO8AuGy5+Ey+4BH9VWiUjlpURFKsyuxNM89NnvGAaM7FJf6/eUle3fw7ePQcohc7/tcOj/DwjW0hQiUvkpUZEKkZaVy73/WU9atoNujSJ47prWmiultE4nwPdPnJlVNiwOhrwBTfpZG5eISBlSoiLlzjAMJny5iV2JqdQKsfPOLZfg661hyCXmdMK6afDj85CVDDZv6P6AOausXw2roxMRKVNKVKTc/WfVfv73xxG8vWy8e0tHIoM0u3CJndwLX42F/b+Y+3U6wtC3oHY7a+MSESknSlSkXG04mMTEb/4EYMLAFnRuoJV4S8TphLUfw6JnIScNfAOh7zNw2RhN2iYiVZoSFSk3p9KyGTtrPTkOg6tbx3Bnz4ZWh1Q5JR2Arx6AvUvN/biecO2/IFz3U0SqPiUqUi4Mw+CxOX9wOCmDBhE1eHV4O3WeLS7DgPUzYOH/QXYq+ARAv+fgsrvBS318RKR6UKIi5eI/qw+weFsifj5evDeyEyH+vlaHVLmkHDFrUXYvNvdju8J170FEY2vjEhGpYEpUpMztSkzlxW/NfilPXt2CVnVCLI6oktn6DfzvAcg4Bd52sy9K1/vUF0VEqiUlKlKmsnOdjPv8dzJznPRsEskdmtSt6LLT4Yf/g7X/Nvdrt4cbPoSo5tbGJSJiISUqUqbeWryDzYdTCKvhy+s3tsfLS/1SiiR+I3xxFxzfbu53fwiufFrT34tItadERcrMb3tP8t6S3QC8dH1baoX4WxxRJeB0wuop5krHjmwIioHr34fGV1gdmYiIR1CiImXidGYOj3y+AcOAv3Sqx6C2ta0OyfOlHoP598KuH839ZgPNYceBkdbGJSLiQZSoSJmY9P02DidlEBsewLNDW1kdjuc7sArm3AGnj4CPPwx4ETrfCRrCLSLiRomKlNqqPSf4dPUBAF4d1p5gDUU+P8OAVe/BomfAmQsRTeHGT6CWkjsRkcIoUZFSycxx8NQXGwEYcVl9ujWOsDgiD5aZbK7Ts/Vrc7/NMHOdHnuwtXGJiHgwJSpSKpN/3Mm+E+nUCrEzYVALq8PxXAmb4L+3wck94OULV0+CS+9SU4+IyEUoUZES23w4mQ+X7wHgH9e11eyz5/P7LPh2PORmQmgsDJ8B9TpZHZWISKWgREVKJMfh5Im5G3E4DQa3q81VrWpZHZLnceTAwr/Bb1PN/ab94foPoIZWkBYRKSolKlIiHy7fw5/xKYQG+PLc0NZWh+N50k+aTT37lpv7V/wf9HpMiwmKiBSTEhUptoMn03nrx50APD2kFVHBdosj8jBHt8BnIyBpP/gFwQ1TocVgq6MSEamUlKhIsb347Vaycp10aRjOsI51rQ7Hs2z9Gr68B3LSoGYDGDEboltaHZWISKWlREWKZfnOYyzYkoC3l43nr22NTaNWTE4nLHsNlrxk7jfsA8Onqz+KiEgpKVGRIsvOdfLc/7YAcFu3OFrEhFgckYfIyYB598Kf8839LvdC/xfBWz9eIiKlpf9Jpcim/7qX3cfSiAzyY1y/ZlaH4xnSjpv9UQ79Zs6PMuRN6DjK6qhERKoMJSpSJEdTMl0daJ+8ugWhAZozheO7YNZf4NRe8A+Fmz+FBj2tjkpEpEpRoiJFMum7raRlO7ikfhjDOtazOhzrHVgFn90MGacgrD6MnAtRza2OSkSkylGiIhe1Zt9J5m84gs0GE69pg5dXNe9Au/lLs0+KIwvqdIRbPoegaKujEhGpkpSoyAUZhsFL320F4OZLY2lbL9TiiCxkGPDLW/Djs+Z+88Ew7EPwC7Q2LhGRKkyJilzQgs0J/H4giRp+3jxyVTXuQOt0woInz0yH3+VeGPASeHlbG5eISBWnREXOK8fh5NWF2wG4q1cjooP9LY7IIo4cmH8fbJoD2MwEpdv9VkclIlItKFGR85r92wH2HjeHI9/du5HV4VgjOx3m3A47F4KXj7moYNu/WB2ViEi1oURFCpWalctbi83hyA/3bUqQvRp+VTKSzJE9B1aCjz/cOBOa9bc6KhGRaqUa/vaRopi6bA/HU7NpGBnIzZfVtzqcipeaCP+5ARI2gT3UHNkT183qqEREqh0lKlJAYkomHy3fA8ATA5rj6+1lcUQV7NR+mHkdnNwDgVFw65dQu53VUYmIVEtKVKSAyYt3kp43udvVbWKsDqdiHdsBn1wLp49AaH24bT5ENLY6KhGRakuJirg5cCKd/645CMCEgS2r1+rIidtgxlBIS4SoFjBqHoTUsToqEZFqTYmKuHn3513kOg16NY3ksobhVodTcY7+CZ9cA2nHoFZbuO0rCIywOioRkWpPiYq4HDiRzhfrDwEwrl9Ti6OpQEe3mDUp6Scgpp2ZpNSoRkmaiIgHq2a9JOVCzq5N6RRXTX5RJ2yC6UPMJKV2ByUpIiIeRjUqAlTT2pT4jWZzT8Ypc3HBUV9CQE2roxIRkbMoURGgGtamHNlgju7JTIK6ncwhyAFhFgclIiLnUqIi1a82JX7jmSSl3qVw6xfgX41XhRYR8WAe00fl5ZdfxmazMW7cOKtDqXaqVW3KsR0w8/q8JOUysyZFSYqIiMfyiERlzZo1fPDBB7Rrp9k/K9rBk9WoNuXUPrMmJf242XH21rngH2J1VCIicgGWJyqpqamMHDmSDz/8kJo11ZGxon2wbHf1qE1JiT8z42xUC9WkiIhUEpYnKmPHjmXw4MH069fvosdmZWWRkpLi9pCSO56axZy1Zm3K/Zc3sTiacpR23ExSTu2Dmg1h1HxN5iYiUklY2pl29uzZrF+/njVr1hTp+EmTJvH888+Xc1TVxycr95OV66R9vVC6NqqitSkZSWaflOPbIaSuOU9KSG2roxIRkSKyrEbl4MGDPPzww8yaNQt/f/8ivWfChAkkJye7HgcPHiznKKuu9OxcPlm5D4B7+jSummv6ZKfBpzdCwkZzFeTbvoKacVZHJSIixWBZjcq6detITEykY8eOrjKHw8GyZcv417/+RVZWFt7e3m7vsdvt2O32ig61SvrvmoMkpecQF1GDAa2r4ArJudkweyQcXG32RRk1DyKreGdhEZEqyLJEpW/fvmzatMmt7I477qBFixY8+eSTBZIUKTu5DicfrdgLwF29GuHtVcVqU5xO+Op+2PMz+AaaHWdj2lodlYiIlIBliUpwcDBt2rRxKwsMDCQiIqJAuZSt7zYncOhUBuGBfgzvVM/qcMrej8/Cpjng5QM3/wfqdbY6IhERKSHLR/1IxTIMg6nLdgMwulsD/H2rWM3Vqvfh17fN7WvfhcZXWhuPiIiUikdNob9kyRKrQ6jyft19gs2HUwjw9ea2blWsY+mW+bDgKXO77zPQ/mZLwxERkdJTjUo188GyPQDc2LkeNQP9LI6mDO3/Fb68GzDg0rug53irIxIRkTKgRKUa2ZV4mmU7juFlgzt7NrI6nLKTuA0+uxkcWdBiCAx8FaricGsRkWpIiUo1MnPlfgD6taxF/YgaFkdTRlKOwH+GQWYyxHaBYR+BVxXrdyMiUo0pUakmTmfmMHedOV3+bd0aWBtMWclKhVk3QsohiGgKI2aDb4DVUYmISBlSolJNzPv9MGnZDhpFBdKjSRVY58bpNPukHN1kzjp76xdQo4ouAyAiUo0pUakGDMNgxq/7AHNIcpWYLv+nibD9W/C2w82famp8EZEqSolKNfDr7hPsPpZGoJ83N3Ssa3U4pffHbFjxprl97b8g9jJr4xERkXKjRKUayK9NGdapHsH+vtYGU1oHVsP/HjS3ez0K7W60Nh4RESlXSlSquMNJGfy49ShA5Z/gLekAfD4SHNnmMOQr/m51RCIiUs6UqFRxs1btx2lAjyYRNIkOtjqckstKhc9GQNoxqNUWrv8AvPT1FRGp6vQ/fRWWmeNg9pqDQCUfkux0wpdj4OhmCIyGEZ+BPcjqqEREpAIoUanCvt0Yz8m0bOqGBdC3RbTV4ZTcz/+A7d+dGeETFmt1RCIiUkGUqFRhs9ccAGDEZbH4eFfSf+o//wfLXze3r3kHYi+1Nh4REalQRV49efz44i/y9ve//53wcE3CZYXdx1JZs+8UXjb4S6dKWgNxbDvMv8/c7joW2t9kbTwiIlLhipyoTJ48mW7duuHnV7QVd1esWMEDDzygRMUi/11r9k25vHk0MaH+FkdTApkpMHskZKdCg15w1USrIxIREQsUOVEBmDdvHtHRRevrEBxciUeYVHI5DidfrDsMwI2dK2FtitNp1qSc2AkhdeEv08C7WF9VERGpIorccWHatGmEhoYW+cQffPABtWrVKlFQUjo/b0vkeGoWkUF+9G1ZCTvRrngDtn0D3n5w40wIirI6IhERsUiR/0wdPXo0DoejyCe+5ZZbShSQlF5+s88NHevhW9k60e7+GX76h7k9+HWo18naeERExFLF+i1Wt25dnnrqKXbs2FFe8UgpJaZk8vP2Y0AlbPZJiYcv7gIM6Hib+RARkWqtWInK2LFjmTt3Li1btqRXr15Mnz6d9PT08opNSmDu+kM4nAad4mrSJLoSTYrmyIW5f4X04+bMswNftToiERHxAMVKVJ5++ml27drF4sWLadSoEQ888AC1a9dmzJgxrF69urxilCIyDIM5aw8BcFNlq035+R9w4FfwC4YbZ4BvgNURiYiIByhRB4bLL7+cGTNmkJCQwOuvv87WrVvp1q0brVu35o033ijrGKWIftt7kr3H0wj082Zwu9pWh1N0OxbCijfN7WvfgYjG1sYjIiIeo1Q9LYOCgrjrrrtYsWIFX3/9NQkJCTz++ONlFZsU0+d5nWiHtKtDoL2SDOdNOgBf3m1uX3YPtL7e2nhERMSjlCpRSU9PZ/r06fTp04drrrmGiIgIXnzxxbKKTYohNSuX7zbFA3DjpZWk2ceRA3PvhMwkqNMR+r9gdUQiIuJhSvRn96+//sq///1v5syZQ25uLn/5y1944YUX6N27d1nHJ0W0cHMCmTlOGkUG0rF+mNXhFM2Sl+HQb2APgeHTwMdudUQiIuJhipWovPrqq0ybNo0dO3bQuXNnXnvtNUaMGKFZaD3A/A3mTLTXdqiLzWazOJoi2LvszGKDQydDzQZWRiMiIh6qWInKa6+9xq233sqcOXNo06ZNecUkxZR4OpNfdh0H4NoOdSyOpgjSTuT1SzHgklHQZpjVEYmIiIcqVqJy5MgRfH19yysWKaFv/ojHaUCH2DAaRAZaHc6FGQb87wE4HQ8RTWHgK1ZHJCIiHqzInWnffvvtYk2h//7773P69OkSBSXF81Ves891laE2Zc1HsP07cx2fv/wb/Dw8sRIREUsVOVF55JFHipV4PPHEExw7dqxEQUnR7T2exh+HkvH2sjGkvYcnKkf/hIX/Z25f9QLUbmdtPCIi4vGK3PRjGAZ9+/bFx6dob8nIyChxUFJ08383a1N6NokkMsiDR83kZpn9UhxZ0LQ/dLnH6ohERKQSKHKi8uyzzxbrxNdeey3h4eHFDkiKzjCMM80+l3h4bcrPL8HRTVAjAq75F1SGkUkiImK5cktUpPz9cSiZfSfSCfD1pn+rGKvDOb/9v8Ivb5nbQ9+G4FrWxiMiIpVGiWemTUpK4qOPPmLChAmcPHkSgPXr13P48OEyC04uLL/Z56pWtTx3yvzMFJh3D+ZQ5Fuh5RCrIxIRkUqkRL/dNm7cSL9+/QgNDWXfvn2MGTOG8PBwvvzySw4cOMAnn3xS1nHKOXIdTr7ZeATw8GafBRPM9XzC4uDql62ORkREKpkS1aiMHz+e22+/nZ07d+Lv7+8qHzRoEMuWLSuz4OT8ftl9guOp2YQH+tGraZTV4RRu69ew4T+ADa7/AOyawVhERIqnRInKmjVruOeegqM26tatS0JCQqmDkov7+g+zNmVQ2xh8vUu1tmT5SDsOX48zt3uOg7huVkYjIiKVVIl+w9ntdlJSUgqU79ixg6goD/3rvgrJcThZ9OdRAIa089Bmn+8eh/TjEN0KLp9gdTQiIlJJlShRueaaa5g4cSI5OTkA2Gw2Dhw4wJNPPsmwYVq3pbyt3H2C5IwcIoP8uLSBBw4B//Mr2PIl2Lzhuve0KrKIiJRYiRKV119/ndTUVKKjo8nIyKBPnz40adKE4OBgXnzxxbKOUc7x/Wazea1/6xi8vTxsPpK04/DNeHO713ioc4m18YiISKVWolE/oaGhLFq0iBUrVrBx40ZSU1Pp2LEj/fr1K+v45BwOp8EPW8xEZWAbD5w75ewmn96PWx2NiIhUcqWafKNnz5707NmzrGKRIvht70lOpGUTVsOXro0irA7HnZp8RESkjBU5UXn77be5++678ff35+23377gsQ899FCpA5PCfb85HoCrWtbyrNE+aSfONPn0fERNPiIiUiaKnKi8+eabjBw5En9/f958883zHmez2ZSolBOn02BBXv+UQW1rWxzNORb+7UyTT58nrI5GRESqiCInKnv37i10WyrO+gOnSDydRbDdh+5NPKjZZ9ePsHE2YDMXHFSTj4iIlBFL2w6mTJlCu3btCAkJISQkhG7duvH9999bGZJHyx/t069VLew+3hZHkyc7Db55xNzuci/U62RtPCIiUqWUKFEZNmwYr7zySoHyV199leHDhxf5PPXq1ePll19m3bp1rF27liuvvJJrr72WLVu2lCSsKs0wzjT7XO1Jo31+fslcyyc0Fq78u9XRiIhIFVOiRGXZsmUMGjSoQPnAgQOLtdbP0KFDGTRoEE2bNqVZs2a8+OKLBAUFsWrVqpKEVaVtPJTM4aQMavh506eZh8z+e3g9rHrP3B7yJtiDrI1HRESqnBINT05NTcXPz69Aua+vb6FT6xeFw+Fgzpw5pKWl0a1b4evCZGVlkZWV5dov6bUqo/xmnytaROPv6wHNPo4c+PohMJzQdjg0vcrqiEREpAoqUY1K27Zt+fzzzwuUz549m1atWhXrXJs2bSIoKAi73c69997LvHnzznuOSZMmERoa6nrExsaWJPxKxzAM17Bkj5nkbeW/IGETBNSEAZOsjkZERKqoEtWoPP3009xwww3s3r2bK6+8EoDFixfz2WefMWfOnGKdq3nz5mzYsIHk5GTmzp3L6NGjWbp0aaHJyoQJExg/frxrPyUlpVokKzuOprL/RDp2Hy+uaB5tdThwah8syeujNOAlCPKQpigREalySpSoDB06lPnz5/PSSy8xd+5cAgICaNeuHT/++CN9+vQp1rn8/Pxo0qQJAJ06dWLNmjW89dZbfPDBBwWOtdvt2O3Vb+jrj1vNlZJ7NIkk0F6qyYRLzzDg+ychNwMa9IL2I6yNR0REqrQS/9YbPHgwgwcPLstYAHA6nW79UAQW5yUqV7bwgNqU7d/BjgXg5QuD3wCbhy2KKCIiVUqp/jz/6aef+OOPP4iPj+epp54iOTkZPz8/6tatC0BaWhqBgYHnff+ECRMYOHAg9evX5/Tp03z66acsWbKEhQsXliasKuVEaha/H0wCoG9LixOV7DSzNgWgx0MQ1czaeEREpMorUaJy4MABrr/+erZu3UqzZs3YsmUL9957LytXrmTBggXMnDkTwzBo3bo1+/btO+95EhMTue2224iPjyc0NJR27dqxcOFCrrpKI0jy/bz9GIYBreuEUDs0wNpglr4CyQchrD70eszaWEREpFooUaJy7733EhMTw8KFC4mMjCQ4OBiADh06MGrUKE6ePEnjxo1xOBwXPM/HH39ckstXK/nNPn2tbvZJ3Aor3zW3B74GfjWsjUdERKqFEiUqS5YsYc2aNURGRrqVh4aG4uvry2uvvcaCBQuYP39+WcRYbWXnOlm24xgAfVvWsi4Qw4BvHwVnLrQYAs2vti4WERGpVkqUqAQFBXH8+PEC5QkJCURFRdGqVatiz6ciBa3ee4K0bAdRwXba1g21LpCNn8P+X8C3Blz9snVxiIhItVOiCd+uueYa7r//fv744w8AbHkjP9577z2GDRtWdtFVc4u3JgJwZfNovLwsGl2TdRoWPWNu934cwqr+vDUiIuI5SpSovP7669SpU4eOHTtSu3Zt0tPT6dq1K7t37+all14q6xirJcMwWLwtr3+KlaN9lr0GqUchvBF0G2tdHCIiUi2VqOknNDSURYsWsWLFCjZu3EhqaiodO3akX79+ZR1ftbUzMZWDJzPw8/GiZ9PIi7+hPBzfBSvzFh28+mXwqX6T7YmIiLVKNY9Kz5496dmzZ1nFImfJb/bp3jiCGn4WzUa7cAI4c6Bpf2g2wJoYRESkWivyb8C3336bu+++G39/f95+++0LHvvQQw+VOrDqzvJhyTsWws4fzBloteigiIhYpMiJyptvvsnIkSPx9/fnzTffPO9xNptNiUopnUzLZv2BUwBcacWw5NwsWPCUud3tfohsUvExiIiIUIxEZe/evYVuS9lbsj0RpwEta4dQN8yC2WhXvQcn90BQLXOkj4iIiEVKNOrnbIZhYBhGWcQieX7aZvZPsaTZ5/RRWPZPc/uqiWAPrvgYRERE8pQ4Ufn4449p06YN/v7++Pv706ZNGz766KOyjK1acjgNVuwyJ9O7vHlUxQfw84uQnQp1O0HbGyv++iIiImcp0XCSZ555hjfeeIMHH3yQbt26AbBy5UoeeeQRDhw4wMSJE8s0yOpk8+FkktJzCLb70D42rGIvfnQL/D7T3B7wEniVusJNRESkVEqUqEyZMoUPP/yQESNGuMquueYa2rVrx4MPPqhEpRSW7zTX9unWOAJf7wpMFAwDFv4fGE5odR3U71px1xYRETmPEv0mzMnJoXPnzgXKO3XqRG5ubqmDqs6W7TSbfXo3q+Bmn10/wp6fwdsP+j1XsdcWERE5jxIlKqNGjWLKlCkFyqdOncrIkSNLHVR1dTozh/X7zWHJvZtWYKLiyDVrUwC63APhDSvu2iIiIhdQ4ilPP/74Y3744Qe6djWbCFavXs2BAwe47bbbGD9+vOu4N954o/RRVhOr9pwk12nQIKIG9SNqVNyF10+H49shIBx6PVZx1xUREbmIEiUqmzdvpmPHjgDs3r0bgMjISCIjI9m8ebPruPxVlaVo8vun9KrI2pTMZPg5b+bZK/4GAWEVd20REZGLKFGi8vPPP5d1HAIs25GfqFTgIoQrJkP6cYhoCp1ur7jrioiIFIHGn3qIAyfS2XciHR8vG90aR1TMRVPiYVVeX6Orngdv34q5roiISBGVuI/K2rVr+e9//8uBAwfIzs52e+3LL78sdWDVzfJdZm1Kx/o1CfavoIRh6cuQmwGxXaH5oIq5poiISDGUqEZl9uzZdO/ena1btzJv3jxycnLYsmULP/30E6GhoWUdY7VQ4c0+x3bA+rzJ3a56HtSfSEREPFCJEpWXXnqJN998k6+//ho/Pz/eeusttm3bxo033kj9+vXLOsYqL9fh5NddJ4AKnD/lp4lgOMyaFE3uJiIiHqpEicru3bsZPHgwAH5+fqSlpWGz2XjkkUeYOnVqmQZYHfxxKInTWbmE1fClTd0KqJE6uAa2fg02L+j7TPlfT0REpIRKlKjUrFmT06dPA1C3bl3XkOSkpCTS09PLLrpqYtkOczbank0i8fYq5yYYw4AfnzW3O9wC0S3L93oiIiKlUKLOtL1792bRokW0bduW4cOH8/DDD/PTTz+xaNEi+vbtW9YxVnnL8uZPqZDZaHcugv2/gI8/XD6h/K8nIiJSCiVKVP71r3+RmZkJwP/93//h6+vLr7/+yrBhw/j73/9epgFWdcnpOfxxMAmAXs3KuSOt0wk/Pmdud7kHQuuV7/VERERKqUSJSnh4uGvby8uLp556qswCqm5W7z2B04DGUYHUDg0o34tt+RISt4A9FHo+Ur7XEhERKQPFSlS8vLwuOi2+zWbTCsrFsHKPOdqn3Cd5c+TCkryp8rs/CAE1y/d6IiIiZaBYicq8efPO+9rKlSt5++23cTqdpQ6qOlm15yQAXRuVc6Ky8XM4sctceLDrveV7LRERkTJSrETl2muvLVC2fft2nnrqKb7++mtGjhzJxIkTyyy4qu5UWjZb41OAck5UcrPNWWjBbPKxB5fftURERMpQidf6OXLkCGPGjKFt27bk5uayYcMGZsyYQVxcXFnGV6Wt3ms2+zSrFURkkL38LvT7TEg6AEG14NK7yu86IiIiZazYiUpycjJPPvkkTZo0YcuWLSxevJivv/6aNm3alEd8VVqFNPvkZMCy18ztXo+BX43yu5aIiEgZK1bTz6uvvsorr7xCTEwMn332WaFNQVJ0K3fndaQtz0Rl7TQ4HQ8h9aDT6PK7joiISDkoVqLy1FNPERAQQJMmTZgxYwYzZswo9DitnnxxJ1Kz2H7UnN23S3klKlmpsOINc7vPE+BTjs1LIiIi5aBYicptt9120eHJUjSr95rNPi1iggkP9Cufi6z5ENKOQc2G5nT5IiIilUyxEpXp06eXUxjVT36zT7n1T8lKhV/fMbf7PAnevuVzHRERkXJU4lE/Ujqr9pRzorL235B+AsIbQdvh5XMNERGRcqZExQLHTmexMzEVmw26NAy/+BuKKzsdfn3b3O71GHiXaKUEERERyylRsUB+bUqLmBBqlkf/lHXTzL4pYXHQ7sayP7+IiEgFUaJigTPNPuVQm5KTAb+8ZW73fkx9U0REpFJTomIB10KE5dE/Zd0MSD0KofWh3c1lf34REZEKpESlgiWmZLLnWFpe/5QyTlRyMuGXyeZ2r0fAp5yGPYuIiFQQJSoVLL82pVXtEEJrlHGzzO8zz8xC22Fk2Z5bRETEAkpUKlj++j5l3uyTmw0r3jS3e47TLLQiIlIlKFGpYGv2mYnKZWU9LHnjbEg5DEExcMmosj23iIiIRSxNVCZNmsSll15KcHAw0dHRXHfddWzfvt3KkMrVqbRsdiWmAtC5QRkmKk4HrJhsbnd/AHz9y+7cIiIiFrI0UVm6dCljx45l1apVLFq0iJycHPr3709aWpqVYZWbdftPAdAoKrBs1/fZ+j84uRv8w6DT7WV3XhEREYtZOmXpggUL3PanT59OdHQ069ato3fv3hZFVX7W5iUqneNqlt1JDQOW562Q3OVesAeX3blFREQs5lFzqycnJwMQHl54s0hWVhZZWVmu/ZSUlAqJq6ys22/2TynTZp/diyFhI/gGQpd7yu68IiIiHsBjOtM6nU7GjRtHjx49aNOmTaHHTJo0idDQUNcjNja2gqMsuaxcB38cMhOxMq1Rya9N6XQ71CiHmW5FREQs5DGJytixY9m8eTOzZ88+7zETJkwgOTnZ9Th48GAFRlg6mw8nk53rJCLQj4aRgWVz0gOrYf8v4OUL3caWzTlFREQ8iEc0/TzwwAN88803LFu2jHr16p33OLvdjt1eOecHWbvP7J/SKa4mNputbE66Iq82pf3NEFq3bM4pIiLiQSxNVAzD4MEHH2TevHksWbKEhg0bWhlOuXJ1pG1QRs0+R7fAjgWADXqMK5tzioiIeBhLE5WxY8fy6aef8tVXXxEcHExCQgIAoaGhBAQEWBlamTIMwzU0uVNcGfUjyV8hudW1ENmkbM4pIiLiYSztozJlyhSSk5O5/PLLqV27tuvx+eefWxlWmdtzPI2Tadn4+XjRpm5I6U+YfAg2f2Fu93i49OcTERHxUJY3/VQH6/L6p3SoF4bdx7v0J1z9PjhzoUEvqNux9OcTERHxUB4z6qcqy1/fp1NZ9E/JTIa1083t7g+V/nwiIiIeTIlKBVhXljPSrv8Esk9DVAto0q/05xMREfFgSlTK2YnULPYcN9cu6lTaRMWRA6ummNvdHgAv/fOJiEjVpt905Sy/NqVpdBBhNUq5EOHmLyHlMARGQ7sbyyA6ERERz6ZEpZyV2fwphgG/vmNud7kHfCrnxHciIiLFoUSlnK3N70hb2vlT9iyBo5vAtwZ0/mvpAxMREakElKiUo8wcB5sOmwsRXlraGpX82pRLRmnxQRERqTaUqJSjzYeTyXEYRAbZqR9eo+QnStwKuxeDzQu63ld2AYqIiHg4JSrlaMPBJAAuqR9WuoUI80f6tBgM4VV3PSQREZFzKVEpR/mJSofYsJKfJP0kbMxbUqDr/aWOSUREpDJRolKOyiRRWTcdcjMhph3U71YWYYmIiFQaSlTKyfHULA6dysBmg7b1Qkt2EkcO/Pahud31PihN85GIiEglpESlnPyRV5vSOCqIEH/fkp1k6//g9BEIjII2w8ouOBERkUpCiUo5yU9U2tcLK/lJVr1vPne+UxO8iYhItaREpZxsOGTOn9KhfljJTnBoHRz6Dbx8NcGbiIhUW0pUyoFhGK4alQ4lrVFZnTckuc0wCK5VJnGJiIhUNkpUysG+E+kkZ+Tg5+NFi9rBxT9BSjxsmWdud723bIMTERGpRJSolIMNB82FCNvUCcHXuwS3eO2/wZlrDkeuc0kZRyciIlJ5KFEpB38czOufEluC9X1ys825U8BcJVlERKQaU6JSDn7PH/ETW4L5U7b+D9ISIbg2tBhStoGJiIhUMkpUylhWroOtR1KAEs5Iu+Yj87nT7eBdwvlXREREqgglKmVsW/xpsh1OatbwLf6KyQmb4cBK8PKBjqPLJ0AREZFKRIlKGdvgavYpwYrJ+bUpLYZASO2yDUxERKQSUqJSxv4o6UKEmcmw8b/m9mVjyjQmERGRykqJShk7u0alWP6YDTlpENUS4nqUeVwiIiKVkRKVMpScnsOe42lAMWekNYwzzT6X3qlVkkVERPIoUSlDfxxKAiAuogY1A/2K/sa9y+D4DvALgvY3l09wIiIilZASlTJU4v4paz40n9vfDPYSTLkvIiJSRSlRKUP5NSrti9Psk3IEtn1nbl96V5nHJCIiUpkpUSlDmw6bU+e3q1eMGWl//w8YDrMDbXTLcopMRESkclKiUkYST2dyNCULmw1a1Qkp2pucDlj/ibnd6Y7yC05ERKSSUqJSRrbkTZvfOCqIGn4+RXvT7p8g+SAE1ISWQ8sxOhERkcpJiUoZ2ZLX7NOmqLUpcGaV5Pa3gK9/2QclIiJSySlRKSObD5s1Km3qFrF/Sko8bP/e3O6kdX1EREQKo0SljGw+YtaotK5TxEQlvxNt/e4Q1bwcIxMREam8lKiUgaT0bA6dygCK2JHWrRPt7eUXmIiISCWnRKUM5HekjYuoQWiA78XfsPtnSD4A/mHQ6pryDU5ERKQSU6JSBja7OtIWsdln3TTzuf0I8A0op6hEREQqPyUqZWBzXo1KkZp9TieoE62IiEgRKVEpA1vyOtIWacRPfifa2K6aiVZEROQilKiUUmpWLnuPpwHQ+mI1Kk4n/D7T3FZtioiIyEUpUSmlrfEpGAbUDvUnMsh+4YP3/wKn9oFfMLS6tkLiExERqcyUqJRSfkfaIs2f8vt/zOc2N4BfYDlGJSIiUjUoUSmlMzPSXqTZJzMF/vzK3L5kVDlHJSIiUjUoUSklV0fai9WobPkScjMgsjnU61wBkYmIiFR+liYqy5YtY+jQodSpUwebzcb8+fOtDKfYMnMc7ExMBYow4ie/2eeSW8FmK+fIREREqgZLE5W0tDTat2/Pu+++a2UYJbYt4TQOp0FkkB+1Qi7QkTZxGxxaAzZvaH9zxQUoIiJSyflYefGBAwcycOBAK0MolbM70touVEuyIa82pdkACIqugMhERESqBksTleLKysoiKyvLtZ+SkmJhNGdP9HaBjrSOHPhjtrl9ya0VEJWIiEjVUak6006aNInQ0FDXIzY21tJ4XCN+LtSRducPkHYMAqOgaf8KikxERKRqqFSJyoQJE0hOTnY9Dh48aFks2blOtiecBi7SkTa/E237m8G7CCsri4iIiEulavqx2+3Y7ReZ/bWC7Ew8TbbDSYi/D/VqnmcF5NRE2LHQ3O6gZh8REZHiqlQ1Kp7kz7NWTD5vR9pNc8wFCOt2gugWFRidiIhI1WBpjUpqaiq7du1y7e/du5cNGzYQHh5O/fr1LYzs4vKbfVrWvkBH2j8+M5/bj6iAiERERKoeSxOVtWvXcsUVV7j2x48fD8Do0aOZPn26RVEVzbb8RCXmPInK0S2QsAm8fKHNsAqMTEREpOqwNFG5/PLLMQzDyhBKbFuC2fTTPCa48APyhyQ3GwA1wisoKhERkapFfVRK4NjpLI6nZmOzQbNahSQqTgds/K+5rZloRURESkyJSgnk16Y0jAgkwM+74AF7lkBqAgTU1NwpIiIipaBEpQS2xZv9U1rUPk+zz8bPzec2w8DHM4ZTi4iIVEZKVEpga16NSovCOtJmnYatX5vbGu0jIiJSKkpUSsBVo1JYR9qtX0NOOoQ3NudPERERkRJTolJMuQ4nuxJTgfPMoXL23CkXWlFZRERELkqJSjHtPZ5GtsNJoJ83dcPOmTo/+RDsXW5ut7ux4oMTERGpYpSoFNPWvInemscE4+V1To3Jxv8CBsT1hJpxFR+ciIhIFaNEpZi2xed1pD232ccwzpo75aYKjkpERKRqUqJSTGemzj+nI+3RLXBsK3jbodW1FkQmIiJS9ShRKabz1qhsmmM+N70K/EMrOCoREZGqSYlKMSSn53AkORM4Z40fpxM2f2lutx1uQWQiIiJVk6WLElY2+VPn1w0LIMTf98wLh36D5APgF2wuQigiIh7L4XCQk5NjdRhVmq+vL97ehSwxUwJKVIph+9HzTPSW3+zTcij4njNkWUREPIJhGCQkJJCUlGR1KNVCWFgYMTEx2Eo5p5gSlWLYWtgaP44c2DLP3G77FwuiEhGRoshPUqKjo6lRo0apf4FK4QzDID09ncTERABq165dqvMpUSmGbYWt8bNnCaSfgMAoaNjHmsBEROSCHA6HK0mJiIiwOpwqLyDAbF1ITEwkOjq6VM1A6kxbRE6nwfb8ocln16hsmms+t74evJX3iYh4ovw+KTVq1LA4kuoj/16Xtj+QEpUiOngqnfRsB34+XjSICDQLs9Nh2zfmtkb7iIh4PDX3VJyyutdKVIoov39Ks1pB+Hjn3bYdCyA7FcLqQ71LLYxORESkalKiUkSF9k/Jb/ZpO1wrJYuISLl7+eWXsdlsjBs3DoB9+/Zhs9kKfcyZM8f1vgMHDjB48GBq1KhBdHQ0jz/+OLm5ucW69u23317odXbt2lWWH7EAdaooom3x5wxNzjgFO38wt9XsIyIi5WzNmjV88MEHtGvXzlUWGxtLfHy823FTp07ltddeY+DAgYDZkXjw4MHExMTw66+/Eh8fz2233Yavry8vvfRSsWK4+uqrmTZtmltZVFRUCT9R0ahGpYh2HD2zajIAW78BZw5Et4bolhZGJiIiVV1qaiojR47kww8/pGbNmq5yb29vYmJi3B7z5s3jxhtvJCgoCIAffviBP//8k//85z906NCBgQMH8sILL/Duu++SnZ0NmLUl1113nds1x40bx+WXX+5WZrfbC1yvrCZ2Ox8lKkWQmeNg34k0AJrXyktU8udOaXO9RVGJiEhpGIZBenZuhT8Mwyh2rGPHjmXw4MH069fvgsetW7eODRs2cOedd7rKVq5cSdu2balVq5arbMCAAaSkpLBly5Zix1LR1PRTBHuPp+E0IMTfh6hgO6SfNOdPAWilREVEpDLKyHHQ6pmFFX7dPycOoIZf0X/9zp49m/Xr17NmzZqLHvvxxx/TsmVLunfv7ipLSEhwS1IA135CQkKR4wD45ptvXDU1AAMHDnTrC1MelKgUwc7EVACa1go2h1tt/RoMB8S0hcgmFkcnIiJV1cGDB3n44YdZtGgR/v7+Fzw2IyODTz/9lKeffrrc4rniiiuYMmWKaz8wMLDcrpVPiUoR7Mrrn9I0Oi+LzG/2aX2DRRGJiEhpBfh68+fEil9INsC36H061q1bR2JiIh07dnSVORwOli1bxr/+9S+ysrJcfUTmzp1Leno6t912m9s5YmJi+O2339zKjh496nrtfBwOR4GywMBAmjSp2D/QlagUQX6NSpPoIEg7DnuXmS+0vs66oEREpFRsNluxmmCs0LdvXzZt2uRWdscdd9CiRQuefPJJt46sH3/8Mddcc02BUTjdunXjxRdfdE1nD7Bo0SJCQkJo1aqV67j85CXfnj17yvrjlIhn/wt5iLObflzNPrU7QHgjawMTEZEqLTg4mDZt2riVBQYGEhER4Va+a9culi1bxnfffVfgHP3796dVq1aMGjWKV199lYSEBP7+978zduxY7Ha767jVq1fz4Ycf0rdvX3766ScWLlxI48aN2bt3Lw0bNiy/D3kRGvVzEdm5TvYdN0f8NI0OOqvZR51oRUTEM/z73/+mXr169O/fv8Br3t7efPPNN3h7e9OtWzduvfVWbrvtNiZOnOh23BVXXMEXX3xBy5Yt+fDDD5k2bRrx8fG89tprFfUxCmUzSjJOykOkpKQQGhpKcnIyISEhF39DCew8epqr3lxGoJ83m5/oiO315mA44eE/oGaDcrmmiIiUrczMTFfNwMU6pVZHt99+O0lJScyfP7/Mznmhe16c39+qUbkIV/+UWsHYtn5tJil1OipJERERqQBKVC5ix9kjftTsIyIiUqHUmfYi8mtU2odlwp+/mIUa7SMiIlXI9OnTrQ7hvFSjchG7jpqJymWZv5rNPnU7Q1h9i6MSERGpHpSoXECuw8me42aiEpeQN82ymn1EREQqjBKVC9h/Mp0ch0Fd31TsR1abha2usTYoERGRakSJygXszGv2uTlkEzbDCXUuUbOPiIhIBVKicgG7Es0RP1eRV5vSUrUpIiIiFUmJygXsTEwlhFSapq8zC5SoiIiIVCglKhew42gqfb1+x9twQFRLiKzYFSNFRESqOyUq5+FwGuw+lspA77ylsdWJVkRELHD69GnGjRtHXFwcAQEBdO/enTVr1hR67L333ovNZmPy5Mlu5SdPnmTkyJGEhIQQFhbGnXfeSWpqarHieO6557DZbAUeP/74Y0k/WpFowrfzOHgyHZ/cdHrbN5oFLYdaG5CIiFRLd911F5s3b2bmzJnUqVOH//znP/Tr148///yTunXruo6bN28eq1atok6dOgXOMXLkSOLj41m0aBE5OTnccccd3H333Xz66afFiqV169YFEpPw8PCSfbAiUo3KeexMTOVyrw3423KgZkOo1ebibxIRESlDGRkZfPHFF7z66qv07t2bJk2a8Nxzz9GkSROmTJniOu7w4cM8+OCDzJo1C19fX7dzbN26lQULFvDRRx/RpUsXevbsyTvvvMPs2bM5cuQIYNaWdOjQwe19kydPpkGDBm5lPj4+xMTEuD38/PzK5bO7rlmuZ6/Ediae5mrvvKq1lkPBZrM2IBERKVuGATnpFX9d3xpF/p2Sm5uLw+EosPpwQEAAK1asAMDpdDJq1Cgef/xxWrduXeAcK1euJCwsjM6dO7vK+vXrh5eXF6tXr+b66z17IlMlKuexL/4Et3n9bu60utbaYEREpOzlpMNLBZtJyt3fjoBfYJEODQ4Oplu3brzwwgu0bNmSWrVq8dlnn7Fy5UqaNDEHeLzyyiv4+Pjw0EMPFXqOhIQEoqOj3cp8fHwIDw8nISGhWKFv2rSJoKAg136rVq347bffinWO4vKIpp93332XBg0a4O/vT5cuXcr9QxdF0JFfCLJlkhlQC+p0tDocERGppmbOnIlhGNStWxe73c7bb7/NiBEj8PLyYt26dbz11ltMnz4dWwXU/Ddv3pwNGza4Hl988UW5X9PyGpXPP/+c8ePH8/7779OlSxcmT57MgAED2L59e4EMsKI4nQZtkpeAF2Q1GYS/l0fkcyIiUpZ8a5i1G1ZctxgaN27M0qVLSUtLIyUlhdq1a3PTTTfRqFEjli9fTmJiIvXrn5k13eFw8OijjzJ58mT27dtHTEwMiYmJbufMzc3l5MmTxMTEnPe6DoejQJmfn5+rJqeiWJ6ovPHGG4wZM4Y77rgDgPfff59vv/2Wf//73zz11FOWxHT4RApX2MxJ3oI63GBJDCIiUs5stiI3wXiCwMBAAgMDOXXqFAsXLuTVV19l2LBh9OvXz+24AQMGMGrUKNfv1W7dupGUlMS6devo1KkTAD/99BNOp5MuXbq43nf06FG38+zZs6ecP1HRWJqoZGdns27dOiZMmOAq8/Lyol+/fqxcubLA8VlZWWRlZbn2U1JSyiWu41sWE2tLJckWQliD7uVyDRERkaJYuHAhhmHQvHlzdu3axeOPP06LFi2444478PX1JSIiwu14X19fYmJiaN68OQAtW7bk6quvZsyYMbz//vvk5OTwwAMPcPPNN7sNZU5ISGDixInceuut/P7778ycORObzca2bdto0aJFhX7ms1napnH8+HEcDge1atVyK69Vq1ahHXwmTZpEaGio6xEbG1sucTmSjpBsBLIluBd4W17pJCIi1VhycjJjx46lRYsW3HbbbfTs2ZOFCxcWGIZ8IbNmzaJFixb07duXQYMG0bNnT6ZOnep2TJs2bdixYwetW7fm6aef5qOPPsLPz4/HHnusrD9SsdgMwzCsuviRI0eoW7cuv/76K926dXOVP/HEEyxdupTVq1e7HV9YjUpsbCzJycmEhISUaWxGbhYZqcnUCLOmn4yIiJSdzMxM9u7dS8OGDQsM9RVzHpX58+ezYcOGMjvnhe55SkoKoaGhRfr9bWl1QWRkJN7e3gXaxY4ePVpoBx+73Y7dbq+Q2Gw+diUpIiIiFrO06cfPz49OnTqxePFiV5nT6WTx4sVuNSwiIiJSPVk+7nb8+PF8+OGHzJgxg61bt3LfffeRlpbm6q0sIiIi5eu5554r02afsmR5T9GbbrqJY8eO8cwzz5CQkECHDh1YsGBBgQ62IiIiUv1YnqgAPPDAAzzwwANWhyEiIiIexvKmHxERkYpi4UDXaqes7rUSFRERqfLy5xxJT7dgteRqKv9eF2e+l8J4RNOPiIhIefL29iYsLMy15k2NGjUqZBG/6sgwDNLT00lMTCQsLAxvb+9SnU+JioiIVAv583Odu0CflI+wsLALLnpYVEpURESkWrDZbNSuXZvo6GhycnKsDqdK8/X1LXVNSj4lKiIiUq14e3uX2S9RKX/qTCsiIiIeS4mKiIiIeCwlKiIiIuKxKnUflfzJZFJSUiyORERERIoq//d2USaFq9SJyunTpwGIjY21OBIREREprtOnTxMaGnrBY2xGJZ5P2Ol0cuTIEYKDg8t84p6UlBRiY2M5ePAgISEhZXpuOUP3uWLoPlcM3eeKoftcccrrXhuGwenTp6lTpw5eXhfuhVKpa1S8vLyoV69euV4jJCREPwgVQPe5Yug+Vwzd54qh+1xxyuNeX6wmJZ8604qIiIjHUqIiIiIiHkuJynnY7XaeffZZ7Ha71aFUabrPFUP3uWLoPlcM3eeK4wn3ulJ3phUREZGqTTUqIiIi4rGUqIiIiIjHUqIiIiIiHkuJioiIiHgsJSqFePfdd2nQoAH+/v506dKF3377zeqQqpznnnsOm83m9mjRooXVYVV6y5YtY+jQodSpUwebzcb8+fPdXjcMg2eeeYbatWsTEBBAv3792LlzpzXBVmIXu8+33357ge/31VdfbU2wldikSZO49NJLCQ4OJjo6muuuu47t27e7HZOZmcnYsWOJiIggKCiIYcOGcfToUYsirpyKcp8vv/zyAt/pe++9t0LiU6Jyjs8//5zx48fz7LPPsn79etq3b8+AAQNITEy0OrQqp3Xr1sTHx7seK1assDqkSi8tLY327dvz7rvvFvr6q6++yttvv83777/P6tWrCQwMZMCAAWRmZlZwpJXbxe4zwNVXX+32/f7ss88qMMKqYenSpYwdO5ZVq1axaNEicnJy6N+/P2lpaa5jHnnkEb7++mvmzJnD0qVLOXLkCDfccIOFUVc+RbnPAGPGjHH7Tr/66qsVE6Ahbi677DJj7Nixrn2Hw2HUqVPHmDRpkoVRVT3PPvus0b59e6vDqNIAY968ea59p9NpxMTEGK+99pqrLCkpybDb7cZnn31mQYRVw7n32TAMY/To0ca1115rSTxVWWJiogEYS5cuNQzD/P76+voac+bMcR2zdetWAzBWrlxpVZiV3rn32TAMo0+fPsbDDz9sSTyqUTlLdnY269ato1+/fq4yLy8v+vXrx8qVKy2MrGrauXMnderUoVGjRowcOZIDBw5YHVKVtnfvXhISEty+36GhoXTp0kXf73KwZMkSoqOjad68Offddx8nTpywOqRKLzk5GYDw8HAA1q1bR05Ojtt3ukWLFtSvX1/f6VI49z7nmzVrFpGRkbRp04YJEyaQnp5eIfFU6kUJy9rx48dxOBzUqlXLrbxWrVps27bNoqiqpi5dujB9+nSaN29OfHw8zz//PL169WLz5s0EBwdbHV6VlJCQAFDo9zv/NSkbV199NTfccAMNGzZk9+7d/O1vf2PgwIGsXLkSb29vq8OrlJxOJ+PGjaNHjx60adMGML/Tfn5+hIWFuR2r73TJFXafAW655Rbi4uKoU6cOGzdu5Mknn2T79u18+eWX5R6TEhWxxMCBA13b7dq1o0uXLsTFxfHf//6XO++808LIRErv5ptvdm23bduWdu3a0bhxY5YsWULfvn0tjKzyGjt2LJs3b1ZftnJ2vvt89913u7bbtm1L7dq16du3L7t376Zx48blGpOafs4SGRmJt7d3gR7jR48eJSYmxqKoqoewsDCaNWvGrl27rA6lysr/Duv7XfEaNWpEZGSkvt8l9MADD/DNN9/w888/U69ePVd5TEwM2dnZJCUluR2v73TJnO8+F6ZLly4AFfKdVqJyFj8/Pzp16sTixYtdZU6nk8WLF9OtWzcLI6v6UlNT2b17N7Vr17Y6lCqrYcOGxMTEuH2/U1JSWL16tb7f5ezQoUOcOHFC3+9iMgyDBx54gHnz5vHTTz/RsGFDt9c7deqEr6+v23d6+/btHDhwQN/pYrjYfS7Mhg0bACrkO62mn3OMHz+e0aNH07lzZy677DImT55MWload9xxh9WhVSmPPfYYQ4cOJS4ujiNHjvDss8/i7e3NiBEjrA6tUktNTXX7C2fv3r1s2LCB8PBw6tevz7hx4/jHP/5B06ZNadiwIU8//TR16tThuuuusy7oSuhC9zk8PJznn3+eYcOGERMTw+7du3niiSdo0qQJAwYMsDDqymfs2LF8+umnfPXVVwQHB7v6nYSGhhIQEEBoaCh33nkn48ePJzw8nJCQEB588EG6detG165dLY6+8rjYfd69ezeffvopgwYNIiIigo0bN/LII4/Qu3dv2rVrV/4BWjLWyMO98847Rv369Q0/Pz/jsssuM1atWmV1SFXOTTfdZNSuXdvw8/Mz6tata9x0003Grl27rA6r0vv5558NoMBj9OjRhmGYQ5Sffvppo1atWobdbjf69u1rbN++3dqgK6EL3ef09HSjf//+RlRUlOHr62vExcUZY8aMMRISEqwOu9Ip7B4DxrRp01zHZGRkGPfff79Rs2ZNo0aNGsb1119vxMfHWxd0JXSx+3zgwAGjd+/eRnh4uGG3240mTZoYjz/+uJGcnFwh8dnyghQRERHxOOqjIiIiIh5LiYqIiIh4LCUqIiIi4rGUqIiIiIjHUqIiIiIiHkuJioiIiHgsJSoiIiLisZSoiEil1aBBA2w2GzabrcB6L4XZt2+f6/gOHTqUe3wiUnpKVESkVBISEnjwwQdp1KgRdrud2NhYhg4d6rb+SnmaOHEi8fHxhIaGXvTY2NhY4uPjefTRRysgMhEpC1rrR0RKbN++ffTo0YOwsDBee+012rZtS05ODgsXLmTs2LFs27at3GMIDg4u8kq53t7exMTEEBQUVM5RiUhZUY2KiJTY/fffj81m47fffmPYsGE0a9aM1q1bM378eFatWsX06dNdTS1nP5577jkA1qxZw1VXXUVkZCShoaH06dOH9evXu85vGAbPPfcc9evXx263U6dOHR566KELxrR//36GDh1KzZo1CQwMpHXr1nz33XfleRtEpBwpURGREjl58iQLFixg7NixBAYGFng9LCyMm266ifj4eNfjs88+w8fHhx49egBw+vRpRo8ezYoVK1i1ahVNmzZl0KBBnD59GoAvvviCN998kw8++ICdO3cyf/582rZte8G4xo4dS1ZWFsuWLWPTpk288sorqkERqcTU9CMiJbJr1y4Mw6BFixbnPSYgIICAgAAAdu/ezdixY3nppZe46qqrALjyyivdjp86dSphYWEsXbqUIUOGcODAAWJiYujXrx++vr7Ur1+fyy677IJxHThwgGHDhrkSmkaNGpXmY4qIxVSjIiIlUpyF15OTkxkyZAiDBw/m8ccfd5UfPXqUMWPG0LRpU0JDQwkJCSE1NZUDBw4AMHz4cDIyMmjUqBFjxoxh3rx55ObmXvBaDz30EP/4xz/o0aMHzz77LBs3bizZBxQRj6BERURKpGnTpthstot2mHU4HNx0002EhIQwdepUt9dGjx7Nhg0beOutt/j111/ZsGEDERERZGdnA+Yone3bt/Pee+8REBDA/fffT+/evcnJyTnv9e666y727NnDqFGj2LRpE507d+add94p/QcWEUsoURGREgkPD2fAgAG8++67pKWlFXg9f16TRx55hE2bNjF//nz8/f3djvnll1946KGHGDRoEK1bt8Zut3P8+HG3YwICAhg6dChvv/02S5YsYeXKlWzatOmCscXGxnLvvffy5Zdf8uijj/Lhhx+W7sOKiGXUR0VESuzdd9+lR48eXHbZZUycOJF27dqRm5vLokWLmDJlCk888QTvvfce8+bNw2azkZCQAEBQUBBBQUE0bdqUmTNn0rlzZ1JSUnj88cddfVoApk+fjsPhoEuXLtSoUYP//Oc/BAQEEBcXd96Yxo0bx8CBA2nWrBmnTp3i559/pmXLluV+L0SkfKhGRURKrFGjRqxfv54rrriCRx99lDZt2nDVVVexePFipkyZwtKlS3E4HFxzzTXUrl3b9fjnP/8JwMcff8ypU6fo2LEjo0aN4qGHHiI6Otp1/rCwMD788EN69OhBu3bt+PHHH/n666+JiIg4b0wOh4OxY8fSsmVLrr76apo1a8Z7771X7vdCRMqHzShOjzgREQ/SoEEDxo0bx7hx44r1vueee4758+ezYcOGcolLRMqOEhURqbQaNGhAfHw8vr6+HD58+KLT6B84cIBWrVqRnZ1Nq1atlKiIVAJKVESk0tq/f79rBFCjRo3w8rpwa3Zubi779u0DcK1LJCKeTYmKiIiIeCx1phURERGPpURFREREPJYSFREREfFYSlRERETEYylREREREY+lREVEREQ8lhIVERER8VhKVERERMRjKVERERERj/X/Q5arKv5ufkQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABzE0lEQVR4nO3dd3gU5d7G8e9m0ztJCEkgQOiQUASkF6WIgGBBVEQBCzYUESvn6NGjR7GLFcUGrwUUFVQsiEhvUqR3CJ3Q00PKZt4/NllYEiAJm0zK/bmuuXZ2dnbmt8PC3jzzzDMWwzAMRERERMohN7MLEBERETkfBRUREREptxRUREREpNxSUBEREZFyS0FFREREyi0FFRERESm3FFRERESk3FJQERERkXJLQUVERETKLQUVqdAmT56MxWJh1apVZpdiqvzjsGfPHpdtc8SIEdStW9dl2zODqz/DFVdcQVxcnMu2d6ksFgvPPfec2WWIlCoFFXG5b7/9FovFwowZMwq81rJlSywWC/PmzSvwWu3atenUqVNZlCgiJvjggw+YPHmy2WVIBaOgIi7XpUsXABYvXuy0PDk5mY0bN+Lu7s6SJUucXtu/fz/79+93vFfEFT7++GO2bdtmdhmSR0FFSkJBRVwuKiqKmJiYAkFl2bJlGIbB4MGDC7yW/7wsg0paWlqZ7etshmGQkZFhyr6rGg8PD7y8vMwuQ0rR6dOnyc3NNbsMKUUKKlIqunTpwj///OP0g7xkyRJiY2Pp27cvy5cvd/rHZcmSJVgsFjp37kxqaip+fn48/PDDBbZ74MABrFYr48ePP+++T506Rbt27ahVq5bjf9MjRozA39+fXbt20a9fPwICAhg6dCgAubm5TJgwgdjYWLy9valRowb33nsvp06dctruqlWr6NOnD2FhYfj4+BATE8Odd9550WNRt25drrnmGmbPnk3btm3x8fHho48+AmD37t0MHjyYkJAQfH196dChA7/88kuB91sslkKn+fPnO62bmppKQkICAIsWLWLw4MHUrl0bLy8voqOjeeSRRwoNSTNnziQuLg5vb2/i4uIKPW0H9nD36KOPEh0djZeXF40bN+b111/n7Juw33DDDbRu3drpfQMGDMBisfDTTz85lq1YsQKLxcJvv/0GwMmTJ3nsscdo3rw5/v7+BAYG0rdvX9atW+e0rfnz52OxWPj222958cUXqVWrFt7e3vTs2ZOdO3c6rVtYH5XXX3+dTp06ERoaio+PD23atOG7774r9PMWxR9//IGvry9DhgwhJycHgL/++ouuXbvi5+dHcHAw1157LVu2bHF633PPPYfFYmHnzp2MGDGC4OBggoKCuOOOO0hPT3daNzMzk0ceeYTq1asTEBDAwIEDOXDgQKH1HDx4kDvvvJMaNWrg5eVFbGwsn332mdM6xTmGO3bsYNCgQURERODt7U2tWrW45ZZbSEpKcqzz+eef06NHD8LDw/Hy8qJZs2ZMnDjRaTt169Zl06ZNLFiwwPH9veKKKxyvF+XvQn7d06ZN4+mnn6ZmzZr4+vqSnJxc5O+PVDzuZhcglVOXLl344osvWLFiheMfoyVLltCpUyc6depEUlISGzdupEWLFo7XmjRpQmhoKADXX38933zzDW+++SZWq9Wx3alTp2IYhiNknOv48eP07t2bkydPsmDBAurXr+94LScnhz59+tClSxdef/11fH19Abj33nuZPHkyd9xxB6NHjyY+Pp733nuPf/75hyVLluDh4cHRo0e56qqrqF69Ok899RTBwcHs2bOHH374oUjHY9u2bQwZMoR7772XkSNH0rhxY44cOUKnTp1IT09n9OjRhIaGMmXKFAYOHMh3333H9ddfD8CECRNITU112t5bb73F2rVrHccrX9++fbn99tt56aWXmD59Ounp6dx///2Ehoby999/8+6773LgwAGmT5/ueM8ff/zBoEGDaNasGePHj+fEiRPccccd1KpVy2nbhmEwcOBA5s2bx1133UWrVq2YPXs2jz/+OAcPHuStt94CoGvXrvz4448kJycTGBiIYRgsWbIENzc3Fi1axMCBAwF7kHJzc6Nz586A/Ydq5syZDB48mJiYGI4cOcJHH31E9+7d2bx5M1FRUU71vPzyy7i5ufHYY4+RlJTEq6++ytChQ1mxYsUF/yzefvttBg4cyNChQ8nKymLatGkMHjyYWbNm0b9//yL9eeabNWsWN954IzfffDOfffYZVquVP//8k759+1KvXj2ee+45MjIyePfdd+ncuTNr1qwpEJxuuukmYmJiGD9+PGvWrOGTTz4hPDycV155xbHO3XffzZdffsmtt95Kp06d+Ouvvwqt9ciRI3To0AGLxcKDDz5I9erV+e2337jrrrtITk5mzJgxxTqGWVlZ9OnTh8zMTB566CEiIiI4ePAgs2bNIjExkaCgIAAmTpxIbGwsAwcOxN3dnZ9//pkHHniA3NxcRo0aBdi/xw899BD+/v78+9//BqBGjRqOuovydyHfCy+8gKenJ4899hiZmZl4enqyefPmYn1/pAIxRErBpk2bDMB44YUXDMMwjOzsbMPPz8+YMmWKYRiGUaNGDeP99983DMMwkpOTDavVaowcOdLx/tmzZxuA8dtvvzltt0WLFkb37t0dzz///HMDMFauXGkcPnzYiI2NNerVq2fs2bPH6X3Dhw83AOOpp55yWr5o0SIDML766iun5b///rvT8hkzZjj2U1x16tQxAOP33393Wj5mzBgDMBYtWuRYlpKSYsTExBh169Y1bDZbodv79ttvDcB4/vnnHcteeOEFAzDGjh1r5OTkGIZhGOnp6QXeO378eMNisRh79+51LGvVqpURGRlpJCYmOpb98ccfBmDUqVPHsWzmzJkGYPzvf/9z2uaNN95oWCwWY+fOnYZhGMbKlSsNwPj1118NwzCM9evXG4AxePBgo3379o73DRw40Ljsssscz0+fPl3gM8fHxxteXl5On3XevHkGYDRt2tTIzMx0LH/77bcNwNiwYYNj2fDhw50+Q2HHJSsry4iLizN69OhR4Hidq3v37kZsbKxhGIbx/fffGx4eHsbIkSOd6m7VqpURHh5unDhxwrFs3bp1hpubmzFs2DDHsmeffdYAjDvvvNNpH9dff70RGhrqeL527VoDMB544AGn9W699VYDMJ599lnHsrvuusuIjIw0jh8/7rTuLbfcYgQFBTk+e1GP4T///GMAxvTp0y94XAr7rvXp08eoV6+e07LY2Finv7/5ivp3Ib/uevXqFdhnUb8/UvHo1I+UiqZNmxIaGuroe7Ju3TrS0tIcV/V06tTJ0aF22bJl2Gw2p/4pvXr1Iioqiq+++sqxbOPGjaxfv57bbrutwP4OHDhA9+7dyc7OZuHChdSpU6fQuu6//36n59OnTycoKIjevXtz/Phxx9SmTRv8/f0dVycFBwcD9v9BZ2dnF/t4xMTE0KdPH6dlv/76K+3atXP63P7+/txzzz3s2bOHzZs3F9jO5s2bufPOO7n22mt5+umnAXjmmWd45plnAHjooYccLVA+Pj6O96WlpXH8+HE6deqEYRj8888/ABw+fJi1a9cyfPhwx/+OAXr37k2zZs0K1Gu1Whk9erTT8kcffRTDMByncC677DL8/f1ZuHAhYG85qVWrFsOGDWPNmjWkp6djGAaLFy+ma9euju14eXnh5mb/J8lms3HixAn8/f1p3Lgxa9asKXAs7rjjDjw9PR3P87e1e/fuAuue7ezjcurUKZKSkujatWuh+zifqVOncvPNN3Pvvffy0UcfOerOP54jRowgJCTEsX6LFi3o3bs3v/76a4Ft3XfffU7Pu3btyokTJ0hOTgZwvOfc435u64hhGHz//fcMGDAAwzCcvs99+vQhKSmpwGe82DHM/07Mnj27wOmos519TJOSkjh+/Djdu3dn9+7dTqeIzqe4fxeGDx/utE8o/vdHKg4FFSkVFouFTp06OfqiLFmyhPDwcBo0aAA4B5X8x7P/kXJzc2Po0KHMnDnT8Q/kV199hbe3N4MHDy6wv9tvv52jR4+yYMECatasWWhN7u7uBU5n7Nixg6SkJMLDw6levbrTlJqaytGjRwHo3r07gwYN4r///S9hYWFce+21fP7552RmZhbpeMTExBRYtnfvXho3blxgedOmTR2vny05OZkbbriBmjVr8n//939YLBYAQkJCePLJJwtsZ9++fY4fTH9/f6pXr0737t0BHD8e+fto2LBhgfefW9vevXuJiooiICDggvVarVY6duzIokWLAHtQ6dq1K126dMFms7F8+XI2b97MyZMnnYJKbm4ub731Fg0bNsTLy4uwsDCqV6/O+vXrC/2xq127ttPzatWqARToW3SuWbNm0aFDB7y9vQkJCaF69epMnDixSD+oAPHx8dx2220MGjSId9991/HncPYxON+f6/Hjxwt04r7Y59i7dy9ubm5OpzEL28exY8dITExk0qRJBb7Ld9xxB4Dj+1zUfcfExDB27Fg++eQTwsLC6NOnD++//36BY7VkyRJ69erl6JNTvXp1/vWvfwEU6bgW9+9CYX+fivv9kYpDQUVKTZcuXUhKSmLDhg2O/in5OnXqxN69ezl48CCLFy8mKiqKevXqOb1/2LBhpKamMnPmTAzD4Ouvv+aaa65x+p9/vhtuuIHExETefvvt89Zz9v+48uXm5hIeHs6cOXMKnZ5//nnAHry+++47li1bxoMPPujosNimTZsC/UcKc+7//kpixIgRHDp0iJkzZxIYGOhY/sgjj9CkSROndW02G7179+aXX37hySefZObMmcyZM8dxaWhpXyXRpUsXVq5cyenTpx1BJTg4mLi4OBYtWuQIMWcHlZdeeomxY8fSrVs3vvzyS2bPns2cOXOIjY0ttN6z+y6dzTirY++58vvIeHt788EHH/Drr78yZ84cbr311gu+72yRkZF06tSJX3/91SUDDZbkcxQm/xjddttt5/0+5/cHKs6+33jjDdavX8+//vUvMjIyGD16NLGxsY7OvLt27aJnz54cP36cN998k19++YU5c+bwyCOPONXlSoX9fSru90cqDnWmlVJz9ngqS5YscWqqbtOmDV5eXsyfP58VK1bQr1+/Au+Pi4vjsssu46uvvqJWrVrs27ePd999t9B9PfTQQzRo0ID//Oc/BAUF8dRTTxWpxvr16/Pnn3/SuXPnIoWJDh060KFDB1588UW+/vprhg4dyrRp07j77ruLtL+z1alTp9AxPrZu3ep4Pd/LL7/MzJkz+eGHHwqEksJs2LCB7du3M2XKFIYNG+ZYPmfOnAI1gL1l6Vzn1lanTh3+/PNPUlJSnFpVCqu3a9euZGVlMXXqVA4ePOgIJN26dWPRokXUqFGDRo0aOTpTAnz33XdceeWVfPrpp077TUxMJCws7KKfuSi+//57vL29mT17ttNly59//nmRt+Ht7c2sWbPo0aMHV199NQsWLCA2NhY4cwzO9+caFhaGn59fsWquU6cOubm57Nq1y6nV4dx95F8RZLPZ6NWrV7H2cTHNmzenefPmPP300yxdupTOnTvz4Ycf8r///Y+ff/6ZzMxMfvrpJ6cWmsIGdTy79elsxfm7cD5l8f0Rc6hFRUpN27Zt8fb25quvvuLgwYNOLSpeXl60bt2a999/n7S0tPOOn3L77bfzxx9/MGHCBEJDQ+nbt+959/fMM8/w2GOPMW7cuAKXRp7PTTfdhM1m44UXXijwWk5ODomJiYC9Kfzc/+G2atUKoMinf87Vr18//v77b5YtW+ZYlpaWxqRJk6hbt66jj8iff/7J008/zb///W+uu+66Im07/3/KZ9dsGEaBFqfIyEhatWrFlClTnJrH58yZU6BfQL9+/bDZbLz33ntOy9966y0sFovTn0379u3x8PDglVdeISQkxPFD3rVrV5YvX86CBQucWlPyaz73GE+fPp2DBw8W6TMXhdVqxWKxYLPZHMv27NnDzJkzi7WdoKAgZs+eTXh4OL1792bXrl2A8/HM/+6AvX/VH3/8UWggv5j84/rOO+84LZ8wYYLTc6vVyqBBg/j+++/ZuHFjge0cO3as2PtOTk52XHKdr3nz5ri5uTm+94V915KSkgoNf35+fk7HJV9R/y5cSFl8f8QcalGRUuPp6cnll1/OokWL8PLyok2bNk6vd+rUiTfeeAM4/0Bvt956K0888QQzZszg/vvvx8PD44L7fO2110hKSmLUqFEEBAQU2vH2bN27d+fee+9l/PjxrF27lquuugoPDw927NjB9OnTefvtt7nxxhuZMmUKH3zwAddffz3169cnJSWFjz/+mMDAwBL9+AA89dRTTJ06lb59+zJ69GhCQkKYMmUK8fHxfP/9947TVEOGDKF69eo0bNiQL7/80mkbvXv3dmqVyNekSRPq16/PY489xsGDBwkMDOT7778vtP/G+PHj6d+/P126dOHOO+/k5MmTvPvuu8TGxjqd1howYABXXnkl//73v9mzZw8tW7bkjz/+4Mcff2TMmDFOfSh8fX1p06YNy5cvd4yhAvYWlbS0NNLS0goElWuuuYbnn3+eO+64g06dOrFhwwa++uqrAqcEL0X//v158803ufrqq7n11ls5evQo77//Pg0aNGD9+vXF2lZYWBhz5syhS5cu9OrVi8WLF1OzZk1ee+01+vbtS8eOHbnrrrsclycHBQWV6L48rVq1YsiQIXzwwQckJSXRqVMn5s6dW2C8E7C3vM2bN4/27dszcuRImjVrxsmTJ1mzZg1//vknJ0+eLNa+//rrLx588EEGDx5Mo0aNyMnJ4YsvvnCEIoCrrroKT09PBgwYwL333ktqaioff/wx4eHhHD582Gl7bdq0YeLEifzvf/+jQYMGhIeH06NHjyL/XbiQsvj+iEnK/kIjqUrGjRtnAEanTp0KvPbDDz8YgBEQEOC4pLYw/fr1MwBj6dKlBV47+/LkfDabzRgyZIjh7u5uzJw50zAM+2Wqfn5+593HpEmTjDZt2hg+Pj5GQECA0bx5c+OJJ54wDh06ZBiGYaxZs8YYMmSIUbt2bcPLy8sIDw83rrnmGmPVqlUXPQZ16tQx+vfvX+hru3btMm688UYjODjY8Pb2Ntq1a2fMmjXLaR3gvNO8efOcjkN8fLzjfZs3bzZ69epl+Pv7G2FhYcbIkSONdevWGYDx+eefO+3j+++/N5o2bWp4eXkZzZo1M3744YdCL+1NSUkxHnnkESMqKsrw8PAwGjZsaLz22mtGbm5ugc/2+OOPG4DxyiuvOC1v0KCBARi7du1yWn769Gnj0UcfNSIjIw0fHx+jc+fOxrJly4zu3bs7XdKaf4nquZfMxsfHF/hshX2GTz/91GjYsKHh5eVlNGnSxPj8888dlwpfzNmXJ+fbuXOnERkZaTRt2tQ4duyYYRiG8eeffxqdO3c2fHx8jMDAQGPAgAHG5s2bnd6Xv8/89+Qr7M8yIyPDGD16tBEaGmr4+fkZAwYMMPbv31/g8mTDMIwjR44Yo0aNMqKjow0PDw8jIiLC6NmzpzFp0qRiH8Pdu3cbd955p1G/fn3D29vbCAkJMa688krjzz//dHrfTz/9ZLRo0cLw9vY26tata7zyyivGZ599VuBzJCQkGP379zcCAgIMwOnPtSh/F85Xt2EU/fsjFY/FMIrZY0ukjF1//fVs2LCh0P9BiohI5aY+KlKuHT58mF9++YXbb7/d7FJERMQE6qMi5VJ8fDxLlizhk08+wcPDg3vvvdfskkRExARqUZFyacGCBdx+++3Ex8czZcoUIiIizC5JRERMoD4qIiIiUm6pRUVERETKLQUVERERKbcqdGfa3NxcDh06REBAwHmHZhYREZHyxTAMUlJSiIqKuuiAfhU6qBw6dIjo6GizyxAREZES2L9/f4G72p+rQgeV/Buj7d+/3+lusiIiIlJ+JScnEx0d7XSD0/Op0EEl/3RPYGCggoqIiEgFU5RuG+pMKyIiIuWWgoqIiIiUWwoqIiIiUm5V6D4qIiIixWWz2cjOzja7jErNw8MDq9Xqkm0pqIiISJVgGAYJCQkkJiaaXUqVEBwcTERExCWPc6agIiIiVUJ+SAkPD8fX11cDhZYSwzBIT0/n6NGjAERGRl7S9hRURESk0rPZbI6QEhoaanY5lZ6Pjw8AR48eJTw8/JJOA6kzrYiIVHr5fVJ8fX1NrqTqyD/Wl9ofSEFFRESqDJ3uKTuuOtYKKiIiIlJumR5UDh48yG233UZoaCg+Pj40b96cVatWmV2WiIiIlAOmBpVTp07RuXNnPDw8+O2339i8eTNvvPEG1apVM7MsERGRcunll1/GYrEwZswYAPbs2YPFYil0mj59uuN9+/bto3///vj6+hIeHs7jjz9OTk5OsfY9YsSIQvezc+dOV37EAky96ueVV14hOjqazz//3LEsJibGxIrsDMPg+KHdZGWkUbNBC7PLERERYeXKlXz00Ue0aHHmdyk6OprDhw87rTdp0iRee+01+vbtC9iveOrfvz8REREsXbqUw4cPM2zYMDw8PHjppZeKVcPVV1/t9JsNUL169RJ+oqIxtUXlp59+om3btgwePJjw8HAuu+wyPv744/Oun5mZSXJystNUGlZ+8xLVP27NoRnPlMr2RUREiiM1NZWhQ4fy8ccfO511sFqtREREOE0zZszgpptuwt/fH4A//viDzZs38+WXX9KqVSv69u3LCy+8wPvvv09WVhZgby257rrrnPY5ZswYrrjiCqdlXl5eBfbnqhFoz8fUoLJ7924mTpxIw4YNmT17Nvfffz+jR49mypQpha4/fvx4goKCHFN0dHSp1OVZpz0AsWnLIft0qexDRETMZRgG6Vk5ZT4ZhlHsWkeNGkX//v3p1avXBddbvXo1a9eu5a677nIsW7ZsGc2bN6dGjRqOZX369CE5OZlNmzYVu5ayZuqpn9zcXNq2betoerrsssvYuHEjH374IcOHDy+w/rhx4xg7dqzjeXJycqmElchmnTj0ewhRlpNk75iLR7P+Lt+HiIiYKyPbRrP/zC7z/W5+vg++nkX/+Z02bRpr1qxh5cqVF133008/pWnTpnTq1MmxLCEhwSmkAI7nCQkJRa4DYNasWY6WGoC+ffs69YUpDaYGlcjISJo1a+a0rGnTpnz//feFru/l5YWXl1ep1xUe6MPXlnYM5XfS1s0gWEFFRERMsH//fh5++GHmzJmDt7f3BdfNyMjg66+/5plnSq/bwpVXXsnEiRMdz/38/EptX/lMDSqdO3dm27ZtTsu2b99OnTp1TKrIzmKxsCX4Skj8Hd/df4AtG6weptYkIiKu5eNhZfPzfUzZb1GtXr2ao0eP0rp1a8cym83GwoULee+998jMzHT0Efnuu+9IT09n2LBhTtuIiIjg77//dlp25MgRx2vnY7PZCizz8/OjQYMGRa7fFUwNKo888gidOnXipZde4qabbuLvv/9m0qRJTJo0ycyyAMip2Z7jpwIJy06CPYuh/pVmlyQiIi5ksViKdQrGDD179mTDhg1Oy+644w6aNGnCk08+6dSR9dNPP2XgwIEFrsLp2LEjL774ouO+OwBz5swhMDDQ6axGfnjJt3v3bld/nBIxtTPt5ZdfzowZM5g6dSpxcXG88MILTJgwgaFDh5pZFgANIoL4w9bG/mTLz+YWIyIiVVJAQABxcXFOk5+fH6GhocTFxTnW27lzJwsXLuTuu+8usI2rrrqKZs2acfvtt7Nu3Tpmz57N008/zahRo5y6U6xYsYKPP/6Y3bt388knnzB79mwOHz5MfHx8mXzW8zF9ZNprrrmGDRs2cPr0abZs2cLIkSPNLgmAhjUCmJ3bzv5k6yzIzTW3IBERkfP47LPPqFWrFldddVWB16xWK7NmzcJqtdKxY0duu+02hg0bxvPPP++03pVXXsn3339P06ZN+fjjj/n88885fPgwr732Wll9jEJZjJJcJ1VOJCcnExQURFJSEoGBgS7d9qHEDLq//Aerve4j0JIOd86G2h1cug8RESkbp0+fJj4+npiYmIt2Sq2KRowYQWJiIjNnznTZNi90zIvz+216i0p5FRnkjaenF3/m5nVg2vyTuQWJiIhUQQoq52GxWGhQI4DfbZfbF2z5GSpu45OIiEiFVL67O5usYbg/s/a3INvNG4+kfXB4LURdZnZZIiIiLjV58mSzSzgvtahcQMNwf07jxQZf+5D6uvpHRESkbCmoXEDDGvZhgmefffpHREREyoyCygU0DA8A4NvkphhWTzi+HY5uNbkqERGRqkNB5QJqBvvg42HllM2H9Ohu9oWbZ5pak4iISFWioHIBbm4WGoTbT//sqt7bvnDTDBMrEhERqVoUVC6iYV5QWe7RHqyecGwrHN1iclUiIiJVg4LKRTTI61C76STQoJd9oVpVREREyoSCykXkd6jdcSQVYq+3L9w0Q4O/iYhImUhJSWHMmDHUqVMHHx8fOnXqxMqVKwtd97777sNisTBhwgSn5SdPnmTo0KEEBgYSHBzMXXfdRWpqarHqeO6557BYLAWmP//8s6QfrUgUVC4i/9TPrmOp2Br2AauX/eqfI5tMrkxERKqCu+++mzlz5vDFF1+wYcMGrrrqKnr16sXBgwed1psxYwbLly8nKiqqwDaGDh3Kpk2bmDNnDrNmzWLhwoXcc889xa4lNjaWw4cPO03dunUr8WcrCgWVi4gO8cXT3Y3MnFwOpLtDQ3WqFRGRspGRkcH333/Pq6++Srdu3WjQoAHPPfccDRo0YOLEiY71Dh48yEMPPcRXX32Fh4eH0za2bNnC77//zieffEL79u3p0qUL7777LtOmTePQoUOAvbWkVatWTu+bMGECdevWdVrm7u5ORESE0+Tp6Vkqnz2fgspFWN0s1K9ub1XR6R8RkUrEMCArreynYvx25OTkYLPZCtx92MfHh8WLFwOQm5vL7bffzuOPP05sbGyBbSxbtozg4GDatm3rWNarVy/c3NxYsWJFCQ9e2dG9foqgUQ1/thxOZvvRFHp17APu3nByFyRsgMgWZpcnIiIlkZ0OLxU8TVLq/nUIPP2KtGpAQAAdO3bkhRdeoGnTptSoUYOpU6eybNkyGjRoAMArr7yCu7s7o0ePLnQbCQkJhIeHOy1zd3cnJCSEhISEYpW+YcMG/P39Hc+bNWvG33//XaxtFJeCShHk91PZeSQVvBpAw6tgy0/2VhUFFRERKUVffPEFd955JzVr1sRqtdK6dWuGDBnC6tWrWb16NW+//TZr1qzBYrGUei2NGzfmp59+cjz38vIq9X0qqBRBg/wrf47m9ZCOvf5MUOn5HyiDL4eIiLiYh6+9dcOM/RZD/fr1WbBgAWlpaSQnJxMZGcnNN99MvXr1WLRoEUePHqV27dqO9W02G48++igTJkxgz549REREcPToUadt5uTkcPLkSSIiIs67X5vNVmCZp6enoyWnrCioFEH+zQl3Hk0lN9fArVEfcPeBU/FweB1EtTK3QBERKT6LpcinYMoDPz8//Pz8OHXqFLNnz+bVV19l0KBB9OrVy2m9Pn36cPvtt3PHHXcA0LFjRxITE1m9ejVt2rQB4K+//iI3N5f27ds73nfkyBGn7ezevbuUP1HRKKgUQZ0QXzysFjKybRxMzCA6xA8a9bHf92fTDAUVEREpNbNnz8YwDBo3bszOnTt5/PHHadKkCXfccQceHh6EhoY6re/h4UFERASNGzcGoGnTplx99dWMHDmSDz/8kOzsbB588EFuueUWp0uZExISeP7557ntttv4559/+OKLL7BYLGzdupUmTZqU6Wc+m676KQJ3qxv1wuytKtuPpNgXOq7++UFX/4iISKlJSkpi1KhRNGnShGHDhtGlSxdmz55d4DLkC/nqq69o0qQJPXv2pF+/fnTp0oVJkyY5rRMXF8f27duJjY3lmWee4ZNPPsHT05PHHnvM1R+pWCyGUXF/ZZOTkwkKCiIpKYnAwMBS3dfD0/7hx7WHeLxPY0Zd2QCy0uH1hpCVCnfNgeh2pbp/EREpudOnTxMfH09MTEyBS33FPo7KzJkzWbt2rcu2eaFjXpzfb7WoFFHjCHuH2q0JeS0qnr7Q5Br7/IbpJlUlIiJSuSmoFFHTCHvi25aQfGZh88H2x40/gC3HhKpEREQqNwWVImoSaW9R2XUsjcycvEu26nUH3zBIPw7x880rTkRE5BI899xzLj3t40oKKkUUEehNkI8HtlyDnfnjqVg9IPY6+/yG70yrTUREpLJSUCkii8VCk/x+KodTzryQf/pny8+QnWFCZSIiUlQV+PqRCsdVx1pBpRiaRtr7qWw9u59KrXYQVNt+9c/22SZVJiIiF5J/KW96errJlVQd+ce6OJdRF0YDvhVDk3Ov/AFwc4Pmg2DxW/arf/JPBYmISLlhtVoJDg52DCXv6+tbJvfGqYoMwyA9PZ2jR48SHByM1Wq9pO0pqBRD/iXKW84+9QP20z+L34Idf0BGIvgEl3ltIiJyYfn3tTn3vjdSOoKDgy94L6GiUlAphkY1ArBY4HhqJsdTMwnzz7trZI1YCG8GRzfb+6q0vt3cQkVEpACLxUJkZCTh4eFkZ2ebXU6l5uHhccktKfkUVIrBz8udOiG+7DmRzraEFMIanHV767hB8Ndm++kfBRURkXLLarW67EdUSp860xZTk7yB37YcTnZ+ofmN9sf4hZCSUMZViYiIVE4KKsWUP/CbU4dagGp17VcAYWhMFRERERdRUCmm/BYVp0uU87W82f64floZViQiIlJ5KagUU9O8FpXtR1LJseU6vxh7A7h5QMIGOLLJhOpEREQqFwWVYoqu5ouvp5WsnFz2nEhzftE3BBr1sc+vU6uKiIjIpVJQKSY3NwuNapynnwpAyyH2x/XfQq6tDCsTERGpfBRUSiD/9M/Wcwd+A2h4FfhUg9QE2D2/bAsTERGpZBRUSuCCHWrdPe1jqoBO/4iIiFwiBZUSaHK+ofTz5Z/+2ToLMs+zjoiIiFyUgkoJ5LeoHEzMIPl0IcMw12wDoQ0gO90+pL6IiIiUiIJKCQT5ehAV5A3AtsI61Fos0OIW+/y6qWVYmYiISOWioFJCTSLz+6mc59ROi5vsj/GLIOlAGVUlIiJSuSiolFB+P5Wt597zJ1+1OlCnC2DYL1UWERGRYjM1qDz33HNYLBanqUmTJmaWVGSNHR1qzxNU4MyQ+uumgmGUQVUiIiKVi+ktKrGxsRw+fNgxLV682OySiiQ2KgiwX/ljyz1PCGl2Hbj7wPHtcGBV2RUnIiJSSZgeVNzd3YmIiHBMYWFhZpdUJDFhfvh6WsnIthF/PLXwlbwDIfY6+/w/X5RZbSIiIpWF6UFlx44dREVFUa9ePYYOHcq+ffvOu25mZibJyclOk1msbhaa5XWo3XjwAnVcdpv9ceMPkJV2/vVERESkAFODSvv27Zk8eTK///47EydOJD4+nq5du5KSUviVNOPHjycoKMgxRUdHl3HFzuJq2k//bDyYdP6V6nSGanUhKwU2/1Q2hYmIiFQSpgaVvn37MnjwYFq0aEGfPn349ddfSUxM5NtvC79KZty4cSQlJTmm/fv3l3HFzppF5bWoHLpAULFYoFVeq8o/X5ZBVSIiIpWH6ad+zhYcHEyjRo3YuXNnoa97eXkRGBjoNJkpLq9D7aaDyeSer0MtQKshgAX2LoYTu8qmOBERkUqgXAWV1NRUdu3aRWRkpNmlFEnDGv54Wt1Iycxh/6n0868YVAvq97DPr/26bIoTERGpBEwNKo899hgLFixgz549LF26lOuvvx6r1cqQIUPMLKvIPKxuNIm0j6ey6dBFOvbmd6pdNxVybaVcmYiISOVgalA5cOAAQ4YMoXHjxtx0002EhoayfPlyqlevbmZZxZI/nsoFO9QCNOkPPtUg+SDsnlcGlYmIiFR87mbufNq0aWbu3iXiauZ3qL1Ii4q7FzS/Cf7+yN6ptkGvMqhORESkYitXfVQqojMdapMwLjZMfv7pn62/QPrJUq5MRESk4lNQuUSNIwKwulk4kZZFQvLpC68c2QIiWoAtC9Z/UzYFioiIVGAKKpfI28NKw3B/4CIj1OZrPcz+uHqKblQoIiJyEQoqLlCkEWrztbjJfqPCY1tg/9+lXJmIiEjFpqDiAnF5I9RuutAItfm8gyBukH1+9eTSK0pERKQSUFBxgTMtKkW8SWKbEfbHTT9AxqnSKUpERKQSUFBxgaaRgVgskJB8mmMpmRd/Q622EB4LOadh/fTSL1BERKSCUlBxAT8vd+qF+QFFPP1jsZxpVVk9WZ1qRUREzkNBxUXyT/9cdCj9fPmdao9uggOrSrEyERGRiktBxUXiijqUfj6fYIi7wT6vTrUiIiKFUlBxkVjHUPpFDCpw5vTPxu/hdDHeJyIiUkUoqLhI/s0J95/MICk9u2hvqnU5hDeDnAxY/20pViciIlIxKai4SJCPB7VDfIFitKqoU62IiMgFKai4UPO8DrXrDxTjNE5+p9ojG2H/ilKqTEREpGJSUHGhVtHBAKzdX4xB3HyqQfMb7fMrP3F9USIiIhWYgooLtcwLKuv2F7Nj7OV32x83zYTUoy6tSUREpCJTUHGhuJqBWN0sJCSfJiHpdNHfGNXK3rE2NxvWTCm1+kRERCoaBRUX8vV0p1GNAADW7k8s3psvH2l/XDUZbDkurUtERKSiUlBxsVbR9g61xQ4qza4F31BIPgDbf3d9YSIiIhWQgoqLtXL0U0ks3hs9vKH1MPv8yo9dWpOIiEhFpaDiYvkdatcfSMSWW8xxUdrcAVhg93w4vsPVpYmIiFQ4Ciou1jA8AF9PK2lZNnYdSy3em6vVgUZ97PMrP3V9cSIiIhWMgoqLWd0sjoHf1u5LLP4G8jvVrv0astJcV5iIiEgFpKBSChwDvx1ILP6b6/eAajGQmaT7/4iISJWnoFIKStyhFsDN7cwAcCs+0v1/RESkSlNQKQX5HWq3JqSQkWUr/gYuuw08/ODYFnvHWhERkSpKQaUURAZ5Ex7ghS3XYFNR76R8Np9gaHWrfX7Fhy6tTUREpCJRUCkFFovF0apS7IHf8rW/z/64fTac2OWSukRERCoaBZVS0upSg0pYA2h4FWDY+6qIiIhUQQoqpeSSgwqcaVVZ+xWcLsEpJBERkQpOQaWUNK8VhMUCB05lcDw1s2Qbqd8DwhpDVir885VrCxQREakAFFRKSaC3B/Wr+wMlvEwZwGKBDnmtKis+hNwSXEEkIiJSgSmolKKWtYKBSwgqAC1uAe9gSNyruyqLiEiVo6BSilrVDgbgn0sJKp6+0GaEfX75xEstSUREpEJRUClFl53VoTa3uHdSPlu7kWCxwp5FcHida4oTERGpABRUSlGTCPudlFNO57D9aErJNxRUC2Kvt88vfc81xYmIiFQACiqlyN3q5rhMedWeU5e2sU4P2h83fg9JBy5tWyIiIhWEgkopa1s3BIDVey8xqERdBnW7gmFTXxUREakyFFRKWds61QBYtffkpW+s02j74+opGgBORESqBAWVUnZZ7WDcLLD/ZAZHkk9f2sYa9obqTSArxR5WREREKjkFlVIW4O1B44hAwAX9VCwW6PSQfX75RMjJusTqREREyjcFlTJweV0Xnv5pPhj8a0DKIdj0w6VvT0REpBxTUCkDbfL7qVxqiwqAuxe0v9c+v/RdMC5hfBYREZFyTkGlDORf+bP5cDJpmTmXvsE2d4CHHxzZCLv+uvTtiYiIlFMKKmWgZrAPUUHe2HKNS7vvTz7fEGh9u31+yduXvj0REZFyqtwElZdffhmLxcKYMWPMLqVUtMlrVVl1qeOp5Ov4ILi5Q/wCOLDaNdsUEREpZ8pFUFm5ciUfffQRLVq0MLuUUpM/nsrKPS7oUAsQHA3Nb7LPL37TNdsUEREpZ0wPKqmpqQwdOpSPP/6YatWqmV1OqcnvUPvPvkRsl3KDwrN1GQNYYOssOLrVNdsUEREpR0wPKqNGjaJ///706tXroutmZmaSnJzsNFUUTSIC8PdyJzUzh20Jl3CDwrNVbwxN+tvnl0xwzTZFRETKEVODyrRp01izZg3jx48v0vrjx48nKCjIMUVHR5dyha7jbnXjstrBgIvGU8nXdaz9ccN0SNznuu2KiIiUA6YFlf379/Pwww/z1Vdf4e3tXaT3jBs3jqSkJMe0f//+Uq7StVw6nkq+mm0gpjvk5tjHVREREalETAsqq1ev5ujRo7Ru3Rp3d3fc3d1ZsGAB77zzDu7u7thstgLv8fLyIjAw0GmqSNrWcdGdlM+V36qy5v8g9ahrty0iImIi04JKz5492bBhA2vXrnVMbdu2ZejQoaxduxar1WpWaaWmVe1grG4WDiZmcCgxw3Ubjulub1nJOW2/B5CIiEglYVpQCQgIIC4uzmny8/MjNDSUuLg4s8oqVf5e7jSNDABceJky2G9W2CWvVWXlJ5CR6Lpti4iImMj0q36qmnZ1QwH4O96FQQWgcT+o3hQyk+HvSa7dtoiIiEnKVVCZP38+EyZMMLuMUtWhnr2fyrLdJ1y7YTc36PaYfX7Z+3C64ly6LSIicj7lKqhUBe1jQrFYYPexNI4kn3btxmOvh7BGcDpRrSoiIlIpKKiUsSBfD5pF2q9WWu7yVhUrdHvcPr/sPch00cByIiIiJlFQMUHHevZ+Ki4PKgBxgyC0AWScsnesFRERqcAUVEzQwRFUXNyhFuytKl3z+qosfRcyU12/DxERkTKioGKCdvVCcLNA/PE0EpJc3E8FoPlgqBYD6Sdg1Weu376IiEgZUVAxQaC3B3E1g4BSOv1jdT9zBdDSdyAr3fX7EBERKQMKKibJP/2zbFcpBBWAFjdDcB1IO6ZWFRERqbAUVEzi6FAbX0pBxepxplVlyQT1VRERkQpJQcUkbetWw+pmYe+JdNfe9+dsLYfY+6qkHdO4KiIiUiEpqJgkoLT7qYC9VeWKcfb5JW/D6aTS2Y+IiEgpUVAxUcfS7qcC0PxGCGtsH6122Qeltx8REZFSoKBiolK778/Z3Kxw5b/s88veh/RSGLtFRESklCiomOjyuiG4u1k4cCqD/SdL8RLipgMhojlkpdhPAYmIiFQQ7kVdcezYscXe+NNPP01ISEix31dV+Hm506JWEGv2JbJ89wmiQ3xLZ0dubnDl0zD1ZljxEXR4AAJqlM6+REREXKjIQWXChAl07NgRT0/PIq2/ePFiHnzwQQWVi+hQLzQvqJxkcNvo0ttRoz5Qsy0cXAWL34K+L5fevkRERFykyEEFYMaMGYSHhxdp3YCAgBIVVNV0rB/KB/N3sWzXcQzDwGKxlM6OLBbo8TR8cR2s+hQ6joLgUgxGIiIiLlDkPiqff/45QUFBRd7wRx99RI0aOr1wMW3rhOBpdeNQ0ml2H08r3Z3VuwLqdgVbFswfX7r7EhERcYEiB5Xhw4fj7l70Bphbb70VPz+/EhVVlfh4Wrk8phoAi7YfK92dWSzQ67/2+bVfw5HNpbs/ERGRS1Ssq35q1qzJU089xfbt20urniqpW8PqACzacbz0d1arDTS7FjBg7vOlvz8REZFLUKygMmrUKL777juaNm1K165dmTx5MunpujPvpeqaF1SW7T5BVk5u6e+wx3/AYoXtv8HepaW/PxERkRIqVlB55pln2LlzJ3PnzqVevXo8+OCDREZGMnLkSFasWFFaNVZ6TSICCPP3Ij3Lxuq9p0p/h2ENoM1w+/ycZ8EwSn+fIiIiJVCiAd+uuOIKpkyZQkJCAm+88QZbtmyhY8eOxMbG8uabb7q6xkrPzc1C14ZhACzcUcr9VPJ1fxI8fOHA37D1l7LZp4iISDFd0si0/v7+3H333SxevJiff/6ZhIQEHn/8cVfVVqV0a2QPKovKKqgERNgHfgN7XxVbTtnsV0REpBguKaikp6czefJkunfvzsCBAwkNDeXFF190VW1VSucG9qCy8WAyJ1Izy2ino8EnBI5vg7Vflc0+RUREiqFEQWXp0qXcfffdREZGMmrUKOrWrcu8efPYvn07Tz31lKtrrBLCA7xpGhkIwOKdZXD1D4B3EHTLawGb9xJkppbNfkVERIqoWEHl1VdfdVzxs2HDBl577TUSEhKYMmUK3bp1K60aq4z80z8Lt5dRUAG4/C6oFgOpCbD0nbLbr4iISBEUK6i89tprXH311axbt44VK1Zwzz33aKh8FzoznsoxjLK6EsfdC3rnjaey5B1IOlg2+xURESmCYt3r59ChQ3h4eJRWLVVemzrV8PZw42hKJtuOpNAkIrBsdtx0ANTuBPuWwl8vwPUfls1+RURELqLILSrvvPMONputyBv+8MMPSUlJKVFRVZW3h5UO9UIBWFSWp38sFuiT1wl63VQ4uKbs9i0iInIBRQ4qjzzySLGCxxNPPMGxY2V0qW0lkj9KbZmNp5KvZmtocbN9/o+nNQiciIiUC0U+9WMYBj179izyjQkzMjJKXFRV1i1v4LcV8Sc5nW3D28Nadjvv+R/Y/CPsXWIfBK7pNWW3bxERkUIUOag8++yzxdrwtddeS0hISLELquoahPsTGeTN4aTT/B1/km6NqpfdzoNqQccHYdHrMOcZaHgVuHuW3f5FRETOUWpBRUrGYrEPp//tqgPM23a0bIMKQJcxsOb/4ORuWPGhfVA4ERERk5R4ZNrExEQ++eQTxo0bx8mTJwFYs2YNBw/q8tZL1aNJDQDmbjladpcp5/MKgF7P2ecXvAIpCWW7fxERkbOUKKisX7+eRo0a8corr/D666+TmJgIwA8//MC4ceNcWV+V1LVhGJ5WN/adTGfXMRNGi205BGq2gaxU+PO/Zb9/ERGRPCUKKmPHjmXEiBHs2LEDb29vx/J+/fqxcOFClxVXVfl5udOhvv0y5T+3HC37AtzcoO9r9vl1X8P+lWVfg4iICCUMKitXruTee+8tsLxmzZokJOhUgSv0ahoOwF9mBBWAWm2g1W32+d8eh9xcc+oQEZEqrURBxcvLi+Tk5ALLt2/fTvXqZdz5s5Lq0cQeVFbtPcmptCxziuj1LHgFwqF/dHdlERExRYmCysCBA3n++efJzs4G7Feq7Nu3jyeffJJBgwa5tMCqqlY1X5pEBJBrwILtJg2c5x8O3Z+0z//5HGQkmlOHiIhUWSUKKm+88QapqamEh4eTkZFB9+7dadCgAQEBAbz44ouurrHK6pl3+ufPLUfMK6L9vRDWGNKPw/yXzatDRESqpGLdlDBfUFAQc+bMYfHixaxfv57U1FRat25Nr169XF1fldajSQ3en7eLBduPkW3LxcNa4qvJS87qAX1fhi+uh78nwWVDIaJ52dchIiJVUomCSr4uXbrQpUsXV9Ui52gVHUyonycn0rJYueckneqHmVNI/R7Q7DrYPBNmjYU7Z9uvDBIRESllRQ4q77zzDvfccw/e3t688847F1x39GiNZuoKVjcLVzQO5/s1B5i75ah5QQXg6vGw80848Df88wW0GW5eLSIiUmVYjCIOfRoTE8OqVasIDQ0lJibm/Bu0WNi9e7fLCryQ5ORkgoKCSEpKIjAwsEz2WdZ+23CY+79aQ0yYH/Meu8LcYpZ9ALPHgU81eHA1+IWaW4+IiFRIxfn9LnKLSnx8fKHzUrq6NqqOh9VC/PE0dh1LpX51f/OKaXcPrP0ajmyAOf+B6943rxYREakSTO1oMHHiRFq0aEFgYCCBgYF07NiR3377zcySyh1/L3c61LO3XMw18+ofAKs7XPOmfX7tl7B3mbn1iIhIpVeioDJo0CBeeeWVAstfffVVBg8eXOTt1KpVi5dffpnVq1ezatUqevTowbXXXsumTZtKUlal1TNv8Le5Zo1Se7bodtB6mH3+l7Fgyza3HhERqdRKFFQWLlxIv379Cizv27dvse71M2DAAPr160fDhg1p1KgRL774Iv7+/ixfvrwkZVVaPZva76a8au8pTpo1Su3Zev0XfEPh6GZY+q7Z1YiISCVWoqCSmpqKp6dngeUeHh6FDq1fFDabjWnTppGWlkbHjh0LXSczM5Pk5GSnqSqIDvGlWWQgtlyDOZvLwb2UfEPgqryB/Ra8Aid2mVuPiIhUWiUKKs2bN+ebb74psHzatGk0a9asWNvasGED/v7+eHl5cd999zFjxozzbmP8+PEEBQU5pujo6JKUXyH1ax4BwG8by0FQAWh5C9S7EnJOw88PQ9EuHhMRESmWIl+efLaff/6ZG264gVtvvZUePXoAMHfuXKZOncr06dO57rrrirytrKws9u3bR1JSEt999x2ffPIJCxYsKDSsZGZmkpmZ6XienJxMdHR0pb48Od/Oo6n0enMBHlYLq57uTZCPh9klwcl4+KAj5GTAwPeg9e1mVyQiIhVAcS5PLlFQAfjll1946aWXWLt2LT4+PrRo0YJnn32W7t27l6jofL169aJ+/fp89NFHF123Koyjcrar3lrA9iOpvHlTS25oXcvscuyWvgt/PA3ewTDqbwioYXZFIiJSzhXn97vElyf379+fJUuWkJaWxvHjx/nrr78uOaQA5ObmOrWayBlXx0UC8OuGcnL6B6D9/RDZCk4nwu9Pml2NiIhUMpc0jspff/3FW2+9xRNPPMHJkyeJj4/n4MGDjtfT0tIu+P5x48axcOFC9uzZw4YNGxg3bhzz589n6NChl1JWpZXfT2XhjmOkZuaYXE0eqzsMfAcsVtg0A7ZpHBwREXGdEgWVffv20aZNG6655hqmTJnCW2+9RWJiIkuXLuWpp54CwDAMYmNjL7ido0ePMmzYMBo3bkzPnj1ZuXIls2fPpnfv3iUpq9JrXCOAmDA/snJymbe1HIypki+yJXR60D4/ayxkJJpajoiIVB4lunvyfffdR0REBLNnzyYsLIyAgAAAWrVqxe23387JkyepX78+Npvtgtv59NNPS7L7KstisXB1XAQT5+/it42HGdAyyuySzrhiHGyZBSd3wex/a3h9ERFxiRK1qMyfP59XX32VsDDnu/kGBQXh4eHBa6+9Rt26dZk5c6YrapSz9MvrpzJv6zEysi4cBMuUhw9c9wFgsQ+vv2OO2RWJiEglUKKg4u/vz/HjxwssT0hIoHr16jRr1oyxY8fSpk2bSy5QnMXVDKRWNR8ysm0s2F6OTv8A1O4AHR6wz/80WqeARETkkpUoqAwcOJAHHniAdevWAfZTEgAffPABgwYNcl11UoDFYqFvXDkb/O1sPZ6GkPqQcsh+CkhEROQSlCiovPHGG0RFRdG6dWsiIyNJT0+nQ4cO7Nq1i5deesnVNco58i9TnrvlKJk55ej0D4Cnr04BiYiIy5SoM21QUBBz5sxh8eLFrF+/ntTUVFq3bk2vXr1cXZ8U4rLoYCICvUlIPs3iHccdNy0sN/JPAS1/334K6IFl4BNsdlUiIlIBlSio5OvSpQtdunRxVS1SRG5u9qt/Ji/dw8/rDpW/oAL2U0Dbf7dfBfTbE3DDJLMrEhGRCqjIQeWdd97hnnvuwdvbm3feeeeC644ePfqSC5MLG9gqislL9/DH5iOkZ+Xg63lJmdP1PH3h+o/gs6tg/TfQ6GqIu8HsqkREpIIp8r1+YmJiWLVqFaGhocTExJx/gxYLu3fvdlmBF1LV7vVzNsMwuOL1+ew9kc7bt7Ti2lY1zS6pcH+9CAtftd8L6IFlEFiOxn4RERFTFOf3u8j/DY+Pjy90XsxhsVi4tmUU7/y1kx/XHiq/QaX7E7DjDzi8Fn4cBbf9AHlXiYmIiFzMJd3rB+z/sy/hDZjlEg3MCycLtx/jZFqWydWch9UDbvgY3L1h11+w8hOzKxIRkQqkxEHl008/JS4uDm9vb7y9vYmLi+OTT/QjVJYahPsTVzOQnFyDX9YfMruc86veCHq/YJ//4xk4tt3cekREpMIoUVD5z3/+w8MPP8yAAQOYPn0606dPZ8CAATzyyCP85z//cXWNcgHX5bWqzFxbjoMKwOV3Q/0ekJMBP9wNOeW0BUhERMqVInemPVv16tV55513GDJkiNPyqVOn8tBDDxU6vH5pqMqdafMdST5Nh/FzMQxY9MSVRIf4ml3S+SUfgomdIOMUdHoIrvqf2RWJiIgJivP7XaIWlezsbNq2bVtgeZs2bcjJySnJJqWEagR606l+KAA/rj1ocjUXERgF1+bdVXnpu7DzT3PrERGRcq9EQeX2229n4sSJBZZPmjSJoUOHXnJRUjzXnnX6p9x3bG7S334aCGDGfZBazm6sKCIi5UqJRwn79NNP+eOPP+jQoQMAK1asYN++fQwbNoyxY8c61nvzzTcvvUq5oKvjInh65kZ2Hk1l06Fk4moGmV3ShV31P9i7FI5utoeVod+B2yVfgCYiIpVQiYLKxo0bad26NQC7du0CICwsjLCwMDZu3OhYz6LxMspEoLcHvZqG8+uGBH5ce7D8BxUPH7jxM5h0Beyaa78nUKeHzK5KRETKoRJ1pi0v1Jn2jNmbErj3i9XUCPRi6VM9sbpVgJC46jOY9Qi4ecBds6FmG7MrEhGRMlDqnWml/LmicXWCfT04kpzJoh3HzC6naNrcAU0HQG42TB9hvxpIRETkLCXuo7Jq1Sq+/fZb9u3bR1aW85gYP/zwwyUXJsXj5W7lulY1mbx0D9+u2s8VjcPNLuniLBYY+B4cXg+Je2HmA3DL1xpiX0REHErUojJt2jQ6derEli1bmDFjBtnZ2WzatIm//vqLoKBy3j+iErupbTQAczYf4URqpsnVFJFPMNw0BayesO1XWPae2RWJiEg5UqKg8tJLL/HWW2/x888/4+npydtvv83WrVu56aabqF27tqtrlCJqFhVI85pBZNsMZvxTzsdUOVvUZXD1ePv8n8/BvhWmliMiIuVHiYLKrl276N+/PwCenp6kpaVhsVh45JFHmDRpkksLlOK5+XJ7q8q3q/aX/zFVztb2LogbBLk58N0dkHbC7IpERKQcKFFQqVatGikpKQDUrFnTcUlyYmIi6enprqtOim1gqyi8PdzYfiSVtfsTzS6n6CwWGPA2hDaA5IPww0jItZldlYiImKxEQaVbt27MmTMHgMGDB/Pwww8zcuRIhgwZQs+ePV1aoBRPoLcH/eIiAXurSoXiFQA3/R+4+9jHV5k/3uyKRETEZCUKKu+99x633HILAP/+978ZO3YsR44cYdCgQXz66acuLVCK76a80z8/rztMelYFu/dSjVgY+I59fuFrsPUXc+sRERFTacC3SsgwDK58fT57TqTz2o0tGJx3NVCF8ttTsGIieAbAPfMgrKHZFYmIiIuU2oBvbm5uWK3WC07u7iUemkVcxGKxOMJJhTv9k++qF6BOZ8hKgWlDITPF7IpERMQExUoVM2bMOO9ry5Yt45133iE3N/eSi5JLd2ObWrzxxzZW7jnFrmOp1K/ub3ZJxWP1gMGT4aNucHybfTC4m/5Pg8GJiFQxxQoq1157bYFl27Zt46mnnuLnn39m6NChPP/88y4rTkquRqA3VzYOZ+7Wo3yzcj//6tfU7JKKzz8cbvoCPu8LW36CRa9Dt8fNrkpERMpQie/1c+jQIUaOHEnz5s3Jyclh7dq1TJkyhTp16riyPrkEQ9rZB9/7dtV+TmdX0Et9oy+H/q/b5//6H2z+ydx6RESkTBU7qCQlJfHkk0/SoEEDNm3axNy5c/n555+Ji4srjfrkElzZJJxa1XxITM/mp3WHzC6n5NqMgPb32edn3AuH15lajoiIlJ1iBZVXX32VevXqMWvWLKZOncrSpUvp2rVradUml8jqZuH2DvYWrilL91SskWrPddWLUL8nZKfD1CGQkmB2RSIiUgaKdXmym5sbPj4+9OrVC6vVet71yuruybo8+eJOpWXRYfxcMnNy+f7+TrSpU83skkrudBJ80guOb4eabWDEL+DhY3ZVIiJSTMX5/S5WZ9phw4Zh0VUXFUo1P08Gtoxi+uoD/N+yPRU7qHgHwZBp8ElPOLgafnwQBn2iK4FERCoxDfhWBWw8mMQ17y7Gw2phyVM9CA/wNrukSxO/CL64zn4Dwyufhu66EkhEpCIptQHfpGKKqxlE69rBZNsMpv1dQQeAO1tMV+j/hn1+3v9g84/m1iMiIqVGQaWKGN6pLgBfrdhLtq0SDMrXZgS0v98+/8O9cGC1qeWIiEjpUFCpIvrGRRLm78WR5EzmbD5idjmucdX/oEFvyMmAr2+CE7vMrkhERFxMQaWK8HR349Z29vv/TFm6x9xiXMXqbh9mP7IlpB+HLwdB6jGzqxIRERdSUKlCbm1fB6ubhRXxJ9l4MMnsclzDyx9unQ7BdeBUvL1lJSvN7KpERMRFFFSqkIggb/o3jwTg40W7Ta7GhQJqwG0/gE8IHFoD00eALcfsqkRExAUUVKqYe7rVA2DW+sMcOJVucjUuFNYAbv0W3H1gxx8wawxU3CvvRUQkj4JKFRNXM4guDcKw5Rp8ujje7HJcK/pyGPw5WNzgny9gwStmVyQiIpdIQaUKure7vVVl2t/7OZWWZXI1Lta475kxVuaPh9VTzK1HREQuialBZfz48Vx++eUEBAQQHh7Oddddx7Zt28wsqUro0iCMZpGBZGTb+HL5XrPLcb22d0K3J+zzs8ZoQDgRkQrM1KCyYMECRo0axfLly5kzZw7Z2dlcddVVpKXpqo3SZLFYHK0qU5bt4XS2zeSKSsGV/4LWw8DIhe/ugh1zzK5IRERKoFzd6+fYsWOEh4ezYMECunXrdtH1da+fksu25XLFa/M5mJjBi9fHMbR9HbNLcr1cG/wwEjZ+D+7ecNv3ULeL2VWJiFR5FfZeP0lJ9rE9QkJCCn09MzOT5ORkp0lKxsPqxl1dYgD4ZFE8ttxyk1ddx80K138EjfpCzmn4+mYNtS8iUsGUm6CSm5vLmDFj6Ny5M3FxcYWuM378eIKCghxTdHR0GVdZudx8eTRBPh7EH09jzuYEs8spHVYP++i1Md0gKxW+vAESNppdlYiIFFG5CSqjRo1i48aNTJs27bzrjBs3jqSkJMe0f38luBOwify83Lm9g/2Uz3vzdlKOzgK6loc33DIVarWD04nwxXVwfKfZVYmISBGUi6Dy4IMPMmvWLObNm0etWrXOu56XlxeBgYFOk1yaOzrXxdfTysaDyczdctTsckqPlz8MnQ4RzSHtGPzftZC4z+yqRETkIkwNKoZh8OCDDzJjxgz++usvYmJizCynSgr192JYx7oATJi7vfK2qgD4BMPtMyGsESQfgMnXQKJa5UREyjNTg8qoUaP48ssv+frrrwkICCAhIYGEhAQyMjLMLKvKGdk1pmq0qgD4hcGwH6FaXUjcC5P7walKOJaMiEglYWpQmThxIklJSVxxxRVERkY6pm+++cbMsqqcKtWqAhAYBSN+hZB69tM/k6+BU3vMrkpERAph+qmfwqYRI0aYWVaVVKVaVQCCasKIXyCkPiTlhZWTlezeRyIilUC56Ewr5qtyrSqQ17LyC4Q2hKT9MLk/nNhldlUiInIWBRVxqHKtKgCBkTBiVl4H24P2lhWFFRGRckNBRRyqZKsKQECEvWWlehNIOWRvWTm+w+yqREQEBRU5x9mtKr9vrKSj1RbGPxyGz4LwZpByGD67Gg6tNbsqEZEqT0FFnIT6e3F33j2AXp29jWxbrskVlSH/6jD8Z4hsCenHYcoA2LPE7KpERKo0BRUp4J7u9Qn18yT+eBrTVlaxAdH8wuwtK3W6QGay/d5A2343uyoRkSpLQUUK8Pdy5+FeDQF4+8/tpGbmmFxRGfMOhNu+O3PX5Wm3wjqN7SMiYgYFFSnUkHa1qRvqy/HULD5euNvscsqehw/c/AW0uAUMG8y4B5Z/aHZVIiJVjoKKFMrD6sYTVzcB4ONFuzmactrkikxg9YDrJkL7++zPf38S5o2HqnI1lIhIOaCgIufVNy6CVtHBpGfZePvPKnq5rpsbXP0yXPEv+/MFL8OsMWCrYqfDRERMoqAi52WxWBjX196qMm3lfnYdSzW5IpNYLHDFk9DvdcACqyfD1FsgM8XsykREKj0FFbmg9vVC6dU0HFuuwfhft5pdjrnajYSbvwR3H9g5Bz7vC8mHza5KRKRSU1CRi3qqbxPc3Sz8ueUI87dVkaH1z6fpNfZRbP2qQ8IG+KQnHNlkdlUiIpWWgopcVIPwAO7oXBeA//68mcwcm7kFma1WG7hrjv1mhskH7aPY7ppndlUiIpWSgooUyeieDake4EX88TQ+XRxvdjnmC4mBu/6AOp3tA8N9dSP886XZVYmIVDoKKlIkAd4ejo61787dyeGkDJMrKgd8Q+D2GdB8MOTmwI+j4I+nIbeKtziJiLiQgooU2fWX1aRtnWpkZNt48ZctZpdTPrh7wfWToNvj9udL34Wvb4KMRFPLEhGpLBRUpMgsFgv/vTYWNwvMWn+YpbuOm11S+eDmBj2ehhs/y7si6E97J9vjVXTsGRERF1JQkWKJjQpiaPs6ADz746aqdXfli4kbBHfNhsBacGInfNwDdswxuyoRkQpNQUWK7dGrGlHN14MdR1P5eFEVvA/QhUS2hHvmQ+2OeZ1sB8OStzXsvohICSmoSLEF+3ry7/7NAJjw5w52V9URa8/HvzoM+wnajAAMmPMf+GEkZKWZXZmISIWjoCIlMqh1Tbo2DCMrJ5envt9Abq5aDJy4e8I1E+zD7ru5w4bp8HFPOLbd7MpERCoUBRUpEYvFwkvXN8fX08rfe07y9d/7zC6p/LFY7MPuD/8Z/CPg2BaYdAVs+M7sykREKgwFFSmx6BBfHu/TGICXf9uqsVXOp04nuG8R1O0K2Wnw/V3wy2OQk2l2ZSIi5Z6CilySYR3rclntYFIzc/j3jI0Y6jRaOP9wGPYjdH3M/nzlx/ah9xPVEiUiciEKKnJJrG4WXh3UAk+rG39tPcpP6w6ZXVL55WaFns/Ard+CdzAcWgMfdoVtv5tdmYhIuaWgIpesYY0ARl3ZAIBnf9pEQtJpkysq5xr1gXsXQlRrOJ0IU2+GX5+AbB03EZFzKaiIS9x/RX3iagaSmJ7N49+t01VAF1OtDtz5O7S/3/7874/sA8Qd2WxuXSIi5YyCiriEp7sbE26+DG8PNxbtOM7kpXvMLqn8c/eCvi/DrdPBrzoc3QQfXwl/f6wB4kRE8iioiMs0CPd3DAT38u9b2ZaQYnJFFUSjq+D+pdCgF+Schl8fg6lDIE33UhIRUVARl7qtfW2ubFydrJxcHp72D5k5NrNLqhj8w+0tK1e/DFZP2P4bTOwEO/40uzIREVMpqIhLWSwWXr2xJaF+nmxNSOH12dvMLqnicHODDvfDyL8grDGkHoGvBsFPo+F0stnViYiYQkFFXK56gBevDGoBwMeL4lmw/ZjJFVUwEc3tNzZsf5/9+Zop9taV3fPNrEpExBQKKlIqejWrwW0dagMwZto/HErUqLXF4ukLfV+BEb9AcB1I2g//dy3MGguZugmkiFQdCipSap7u34y4moGcSs9m1NdryMrJNbukiqduF3tH28vvtj9f9am9dWXPYnPrEhEpIwoqUmq8PaxMHNqGQG93/tmXyPjftphdUsXk5Q/937APwR8UDYl7YXJ/mPUIZCSaXZ2ISKlSUJFSFR3iyxs3tQLg8yV7mLVeQ+yXWL0r7K0rrYfbn6/6DN5vD5tmatwVEam0FFSk1PVuVoP7utcH4Mnv1rPrmPpYlJh3IAx8B4bPgtAGkJoA04fbx11JOmB2dSIiLqegImXisasa0T4mhLQsG/d+sZrk09lml1SxxXSF+5ZAtyfAzcM+7sr77WH5RMjV2DUiUnkoqEiZcLe68e6tl1Ej0IudR1N56Ot/yLGpc+0l8fCGHv+G+xZDdAfISoXfn4JPesKB1WZXJyLiEgoqUmbCA7z5eFhbvD3cWLD9GC/9utXskiqH8CZwx29wzVvgFQSH/oFPesCPD2oYfhGp8BRUpEy1qBXMG4NbAfDZknim/r3P3IIqCzc3aHsnPLgSWg6xL/vnC3i3Naz4CGw55tYnIlJCCipS5vq3iGRs70YAPDNzI8t2nTC5okokoAZc/yHc+QdEtIDTSfDbE/BRN429IiIVkoKKmOKhHg0Y0DKKnFyD+79azW5dCeRatdvbh+Hv/yb4VIOjm+xjr0y/A07tMbs6EZEiU1ARU1gsFl67sQUto4NJTM9m2Gd/cyT5tNllVS5uVrj8Lnhojf20EBbY9AO8dzn88YwGixORCsHUoLJw4UIGDBhAVFQUFouFmTNnmlmOlDFvDyufDm9L3VBfDpzKYPhnf5OUocuWXc43xN7R9t6FENMNbFmw9B14pxUs/xByssyuUETkvEwNKmlpabRs2ZL333/fzDLERGH+XnxxV3uqB3ixNSGFkVNWcTpb44CUisgWMOwnuPVbCGsMGafg9yfhgw6w5WeNbisi5ZLFMMrHv04Wi4UZM2Zw3XXXFfk9ycnJBAUFkZSURGBgYOkVJ6Vu86Fkbv5oGSmZOfRuVoOJQ1vjbtWZyVJjy4F//g/mvQRpx+zLottDj2fsg8mJiJSi4vx+V6hfgszMTJKTk50mqRyaRQXyyfC2eLq7MWfzEcb9sIHc3HKRoSsnq7u938rof6Db4+DuA/tXwJRr4P+u1YBxIlJuVKigMn78eIKCghxTdHS02SWJC7WvF8q7Qy7DzQLTVx/g3zM3KqyUNq8A6PG0PbBcfrd9OP7d8+0Dxk29FY5sMrtCEaniKlRQGTduHElJSY5p//79ZpckLtYnNoI3b2qFmwWm/r2PZ37cSDk5O1m5BUZC/zfgodXQaihY3GDbLzCxM3x3FxzfYXaFIlJFVaig4uXlRWBgoNMklc91l9Xk9cEtsVjgqxX7+M+PmxRWykq1OnDdB/DACmh2HWDAxu/slzR/dycc2Wx2hSJSxVSooCJVxw2ta/Hajfaw8sXyvTz3k8JKmareCG6aYr+kuXE/7IHle5jYEb65DQ6vM7tCEakiTA0qqamprF27lrVr1wIQHx/P2rVr2bdP938RuLFNLV4d1AKLBaYs28u/ZmzEpj4rZSuyJQyZar9Dc7NrAYv9UuaPusHXN6vTrYiUOlMvT54/fz5XXnllgeXDhw9n8uTJF32/Lk+uGr5dtZ+nvl9PrgH9m0fy5s0t8XK3ml1W1XR0Kyx63d66YuTal9XtCp0fhga9wGIxtz4RqRCK8/tdbsZRKQkFlarj1w2HeXjaP2TbDLo2DOPD29rg5+VudllV1/GdsPhNWP8N5ObdmTm8GXR6COJuBHdPc+sTkXJNQUUqpUU7jnHvF6tJz7JxWe1gPh9xOcG++kE0VdIBWD4RVk+GrLwbSwZEQYf7oc0I8NbfSxEpSEFFKq1/9p3ijskrSUzPpkG4P5+PuJzoEF+zy5KMRFj1Gaz4EFKP2Jd5BsBlQ6HdPRBa39TyRKR8UVCRSm37kRSGffo3CcmnCfXzZNKwtrSpU83ssgQgJxPWfwtL34Xj2/IWWqDhVdD+HqjXA9x0saFIVaegIpVeQtJp7pqykk2HkvF0d+P1wS0Z2DLK7LIkX24u7P4LVnwEO/44szy0IbS/F1reYh8VV0SqJAUVqRLSMnN4eNpa/txiP9UwtncjHurRAIuuPClfTuyCvyfBP19BVop9mac/NB9s78cS1crM6kTEBAoqUmXYcg3G/7qFTxbHA/bLl1+5sQX+uiKo/DmdDOum2kPLiZ1nlke2grZ3QNwgtbKIVBEKKlLlfLViL8/+uImcXIMG4f58eFsbGoT7m12WFMYwYM8i+5VCW34GW5Z9uac/NL8xr5XlMjMrFJFSpqAiVdLqvSd54Ks1HEnOxM/TyuuDW9K3eaTZZcmFpB23t7KsnnxOK0tLaD0MYm8A3xDTyhOR0qGgIlXWsZRMHvx6DSviTwIwsmsMj/dpgqe7rjQp1wwD9i6xB5bNP55pZbF6QqM+0HIINOitgeREKgkFFanScmy5vDp7G5MW7gagec0g3r6lFfWq61RQhZB+0t7KsnYqHNlwZrlPiL0fS8shULO1husXqcAUVESA3zcm8NQP60lMz8bHw8p/B8YyuG0tXRVUkSRshPXT7GOz5A8kB/bLnFveDC1uhuDa5tUnIiWioCKS53BSBmO/Wcey3ScA6Nc8gpeub66h9ysaWw7Ez4d139g74OZknHmt1uUQe7397s5BtUwrUUSKTkFF5Cy2XINJC3fzxh/byMk1CPP34n/XxXF1XITZpUlJZKbA5p/sp4f2LAbO+icsuv2Z0BKoAQBFyisFFZFCrNufyNhv17LrWBoA/VtE8vzAWEL9vUyuTEosJcHewrJpBuxdilNoqd3RHlqaDoRAXf0lUp4oqIicx+lsG+/+tYMPF+zGlmsQ4ufJswOaMbBllPquVHTJh2HLT/bQsm+Z82s120DjftCkP1Rvoo64IiZTUBG5iI0Hk3hs+jq2JtiHdO/SIIznBsZqkLjKIumgPbRs/AEO/O38WrUYe2Bp3M9+qsiqUYxFypqCikgRZOXk8uGCXbw/byeZObl4WC3c3bUeD/VogK+nfrwqjZQE2PYbbPsVdi8AW+aZ13xCoNHV0Lgv1LsCvPXviEhZUFARKYZ9J9J57udN/LX1KABRQd6M69eUa1pE6nRQZZOZCrvmwtZfYcdsyDh15jU3d4juAA16QsPeUCNOp4hESomCikgJzNl8hOd+2sTBRPulr62ig/l3/6ZcXldDuFdKthzYv9weWrb/Did3Ob/uHwENetmDS/0rwaeaOXWKVEIKKiIllJFlY9LC3Xy0cBfpWTYAro6N4Mm+TYgJ8zO5OilVJ3fDzrmw80+IXwjZ6Wdes7hBzbb200Mx3SC6HbjrajGRklJQEblER1NO89acHXyzch+5BljdLAxuU4sHezSgVjVfs8uT0pZ92n7l0M4/7dOxrc6vu3tD7Q4Q0x3qdYfIVuBmNaVUkYpIQUXERbYfSWH8r1uYt+0YAB5WCze1jWbUlQ2ICvYxuTopM4n7YPd8e2fc+IWQdtT5da8gqNvF3tpSpxPUiFVwEbkABRURF1u99yRvzdnB4p3HAfC0ujG4bS3u6VaPOqE6JVSlGIa9hSV+oT247FkMmUnO63gF2i99rtMRaney30RRp4pEHBRURErJit0neHPOdlbEnwTAzQL9W0RxX/d6xEYFmVydmCLXBofXQXxeaNm3ArJSnNexetkHncsPLrXaqHOuVGkKKiKlyDAMVsSf5MMFu5ifd0oIoGvDMO7sHEP3RtVxc9NlrVVWrg0SNtj7uOxdan9MO1ZwvdCG9hsq1mpjfwyP1eBzUmUoqIiUkc2Hkvlo4S5+XneI3Ly/STFhfgzrWIcb29QiwNvD3ALFfIYBJ3bBvqWwd5k9uJyKL7ieuw9EXXYmuNRsC0E1y75ekTKgoCJSxvafTGfK0j18s2o/KadzAPDztHLdZTW5+fJomtcM0uBxckbaCTi4Gg6shIOr4MDqgv1cAAKi7OElsuWZKSBCA9FJhaegImKStMwcfvjnIJOXxDvu0gzQJCKAm9pGc/1lNanm52lihVIu5ebCiZ1nBZeVcGQzGLaC6/qFnxVcWtgfg+sovEiFoqAiYjLDMFi66wTfrNzP75sSyMrJBexXC/WOrcFNbaPp0iAMq/qyyPlkpdk76Z49HdsKRm7Bdb2D7IElogWEN4Mazex3ifbQJfRSPimoiJQjSenZ/LjuIN+s3M+mQ8mO5WH+nvSNi+SaFpFcXjdEHXDl4rLS4ehmOLz2THg5ugVsWQXXtbhBSD17cMkPL+GxEBKjMV7EdAoqIuXUxoNJTF+1nx/XHSIxPduxvEagF/2a20PLZdHVFFqk6HKy7C0th9fCkU326ehmSD9R+PruPlC9sT28VG8EYY0hrBFUq6urjqTMKKiIlHPZtlwW7zzOL+sPM3tTgqMDLtjv3tyzaQ16NA2nY71QvD30v18pJsOA1KNwdJO9xeXI5rz5rZCTUfh73DzsLTBhDe1BJqyRfT60IXjr31dxLQUVkQokM8fGou3HmbX+EHM2HyEt60wHSh8PK10ahtGzSTg9moQTHuhtYqVS4eXa4NSevFaXLXBiBxzbZu/Ie/ZNGM8VEAWh9e2njULqQbW8x5AY8Aoos/Kl8lBQEamgTmfbWLLzOHO3HuWvLUdJSD7t9HpczUA6Nwijc/0wLq8bgo+nWlvEBXJzIfkgHN9+1pQXYs69r9G5/MLPhJaQemfmq8WAb0jZ1C8VjoKKSCVgGAabDiXz19ajzN1yhHUHnMfZ8LS60bpOMJ3rh9GpQRgtawXhbnUzqVqptDJOwfGdcHL3melUvP3xfP1g8nkHQXBt++XTQdF58/mPtcE7WJdVV1EKKiKV0NGU0yzZeZwlO0+wdOdxDiU5t7b4eFhpFR1M27rVaFOnGq3rVCNQI+NKacpIPBNaTsbnTXlhJjXh4u/3DHAOL/lhJqgWBEbZW2vUwbdSUlARqeQMw2DPiXSW7DzO0l3HWbrrhNNVRGD/j2rjGgG0qVONy2pXo0WtIOpX99fYLVI2stLg1F5I2g+J+5ynpP2F3//oXBY38K9hDy0BkfbHwCh7nxnHfCR4+pb+5xGXUlARqWJycw12Hktl1Z5TrNp7klV7TrHvZMHOkT4eVuJqBtK8ZjAtagURVzOImDA/hRcpe1npkHQgL7jkh5i8UJN8CFIOFz4yb2G8g52DS0CEPeD4Vbc/+ofbJ09/nWoqJxRURISjKadZvecUq/eeYv3BJDYeTCI9q+A//F7ubjSs4U/jGoE0iQigcd4UHuCl+xOJeXJt9laX5IOQfNgeXBzzh+xhJvnQha9WOpeHb8Hw4hRoaoB/dfANA08/hZpSpKAiIgXYcg3ij6ey/kAS6w8kseFgEpsOJXE6u5Ah2YFgXw8a1wigSUQA9ar7ExPmR0yYH1HBPmqBkfLBMOB0Ul6IOXSmJSb1SN509MyUnXbx7Z3N6gW+oeAXan8sMIUUXObuVTqfsxJSUBGRIrHlGuw/mc7WhBS2JaSw7Ugy2xJSiD+eRu55/mXwdHejToivPbhU96NemB91Q/2oHepLeIC3QoyUT5mp9kutHeElL8g4Lctbbsss2T48A5wDjE+w/bTUxR6rYOuNgoqIXJLT2TZ2Hk1lW0IK24/Yg0v88TT2nkgny1Z4CwyAu5uFqGAfalWzTzWDfc/MV/OhRqA3HrqEWsozw7B3BE4/kTedPGv+xPmXF7U/TWHcPOyXcp8vyHgH2QfW8wpwns+fPAMq3NVRCioiUipsuQaHEjMcweXs6VBiBjnna4bJY7FAqJ8XNQK9qBHonTd5nfPoTYivp+53JBVHbi5kJjmHl7TjcDrRfgn3hR5zc8672WLx8AWvwIIh5uxl3oFngo2Xv70lx9PP3sn47Hlr6Q9roKAiImXOlmtwJPk0BxMzOHAqnQMnMzhwKoMDiekcPJXBwcQMsm1F++fG3c1CmL8XIX6ehPp7EurnSYifF6H+noT42afQ/Ed/LwK93dXxVyqe/NabiwWazJS8KTlvSjkz5Zw+//ZLyurlHGAaXQW9n3fpLorz+12x2opEpNyy5p32iQr24fK6BYdOz801OJmexZHk03lT5jmP9vkTaZnk5BokJJ8ucAuB83F3sxDo40GQj8eZR293gvLmz15+9uTv5Y6flzue7jodJSawWOwtG17+9kHuSiInC7JSnQPM6eSzgk3KOVNe2MlKt4ekrNS8KQ1sWfZt2jIhIxMyTtqfR7Z0zectoXIRVN5//31ee+01EhISaNmyJe+++y7t2rUzuywRcSG3vFaSMH8vYqOCzrteti2XYymZHE/N5ERaFidTsziRdmb+ZFqWfT5vSs3MISfXcDwvCU+rG35eVnw93fPCixU/L3f8PO1BJv+5v5c7vp5n5n08rHh5uOHjYcU7b7LPu+HtYcXL3U0tPVK63D3BPcQ191XKybJfHZWZF1zyg4xv6KVv+xKYHlS++eYbxo4dy4cffkj79u2ZMGECffr0Ydu2bYSHh5tdnoiUMQ+rm6NlpihOZ9s4lZ5FUkY2yRk5JGVkO03JedO5y5MyssnMsXcMzrLlkpWey6lzRvd1hfzQ4u1+JsB454WZ/IDj5e6Gh9UNz7MePa1nL7M41jl7Pef3WZyWWd0suFstWN0seLi5YbVacHezP3d3c8PNgkKUOHP3tE8+1cyuxInpfVTat2/P5ZdfznvvvQdAbm4u0dHRPPTQQzz11FMXfK/6qIjIpci25ZKeaSM1K4e0zPzJRmpmDul5y1IzbaRn5ZCa/3qWzbFuRraN09m5nHZ6tF20U3F5kR9cHMHGEWQsecHmzHJ76HFzXuesR4vFgpuFs+YtWC3gZrE/t7qdmc9fz/4crBYLbm5nzeet4+Z2nvmz1jl7fxYLWCDv0f7E/tySF8zsy/PzmcVicVr/7Pfj9Nz5/Wdvt7D3U2B7Z95/7nbPfT+O/eft6+zn51uO8+tnlhS2jqXQ95y7zbPf7+vpToif54W/TMVUYfqoZGVlsXr1asaNG+dY5ubmRq9evVi2bFmB9TMzM8nMPHN9e3JycpnUKSKVk4fVjSBfN4J8XXuVQ7bNObxk5tjIyMrldI7NsTwjL9RkZtvIzMkly5ZLdo5Bls1Gts0gy7Es79GWm7fMICvHvs6ZZfbHbMejgS3XICc394IdmHNyDXJyDUfLkkhhBraM4p0hl5m2f1ODyvHjx7HZbNSoUcNpeY0aNdi6dWuB9cePH89///vfsipPRKRE8k/RBHibXYldbl4gyQ8vtrznOTbn57a8ZWevl20r+L4zj/YgZBgGuYb9yq+z53MNA8MAm3HWfN7yXMNeV/68YRh5r5G3rPD1zp63GXn7y82fB7A/Gti3aYBj+0Dea3nrnD1vfysGZ+oxHOvbZ4xC35+37jnbyn8/5zw38j5f/rkMo5Dt5r3NUa/zEgpZxzjPewq+xnneW9j78z6B6WMfmd5HpTjGjRvH2LFjHc+Tk5OJjo42sSIRkfLPzc2Cp2NcGquptYgUl6lBJSwsDKvVypEjR5yWHzlyhIiIiALre3l54eWleymIiIhUFaa253h6etKmTRvmzp3rWJabm8vcuXPp2LGjiZWJiIhIeWD6qZ+xY8cyfPhw2rZtS7t27ZgwYQJpaWnccccdZpcmIiIiJjM9qNx8880cO3aM//znPyQkJNCqVSt+//33Ah1sRUREpOoxfRyVS6FxVERERCqe4vx+6wYXIiIiUm4pqIiIiEi5paAiIiIi5ZaCioiIiJRbCioiIiJSbimoiIiISLmloCIiIiLlloKKiIiIlFsKKiIiIlJumT6E/qXIH1Q3OTnZ5EpERESkqPJ/t4syOH6FDiopKSkAREdHm1yJiIiIFFdKSgpBQUEXXKdC3+snNzeXQ4cOERAQgMVicem2k5OTiY6OZv/+/bqPUCnScS4bOs5lQ8e5bOg4l53SOtaGYZCSkkJUVBRubhfuhVKhW1Tc3NyoVatWqe4jMDBQfxHKgI5z2dBxLhs6zmVDx7nslMaxvlhLSj51phUREZFyS0FFREREyi0FlfPw8vLi2WefxcvLy+xSKjUd57Kh41w2dJzLho5z2SkPx7pCd6YVERGRyk0tKiIiIlJuKaiIiIhIuaWgIiIiIuWWgoqIiIiUWwoqhXj//fepW7cu3t7etG/fnr///tvskiqd5557DovF4jQ1adLE7LIqvIULFzJgwACioqKwWCzMnDnT6XXDMPjPf/5DZGQkPj4+9OrVix07dphTbAV2seM8YsSIAt/vq6++2pxiK7Dx48dz+eWXExAQQHh4ONdddx3btm1zWuf06dOMGjWK0NBQ/P39GTRoEEeOHDGp4oqpKMf5iiuuKPCdvu+++8qkPgWVc3zzzTeMHTuWZ599ljVr1tCyZUv69OnD0aNHzS6t0omNjeXw4cOOafHixWaXVOGlpaXRsmVL3n///UJff/XVV3nnnXf48MMPWbFiBX5+fvTp04fTp0+XcaUV28WOM8DVV1/t9P2eOnVqGVZYOSxYsIBRo0axfPly5syZQ3Z2NldddRVpaWmOdR555BF+/vlnpk+fzoIFCzh06BA33HCDiVVXPEU5zgAjR450+k6/+uqrZVOgIU7atWtnjBo1yvHcZrMZUVFRxvjx402sqvJ59tlnjZYtW5pdRqUGGDNmzHA8z83NNSIiIozXXnvNsSwxMdHw8vIypk6dakKFlcO5x9kwDGP48OHGtddea0o9ldnRo0cNwFiwYIFhGPbvr4eHhzF9+nTHOlu2bDEAY9myZWaVWeGde5wNwzC6d+9uPPzww6bUoxaVs2RlZbF69Wp69erlWObm5kavXr1YtmyZiZVVTjt27CAqKop69eoxdOhQ9u3bZ3ZJlVp8fDwJCQlO3++goCDat2+v73cpmD9/PuHh4TRu3Jj777+fEydOmF1ShZeUlARASEgIAKtXryY7O9vpO92kSRNq166t7/QlOPc45/vqq68ICwsjLi6OcePGkZ6eXib1VOibErra8ePHsdls1KhRw2l5jRo12Lp1q0lVVU7t27dn8uTJNG7cmMOHD/Pf//6Xrl27snHjRgICAswur1JKSEgAKPT7nf+auMbVV1/NDTfcQExMDLt27eJf//oXffv2ZdmyZVitVrPLq5Byc3MZM2YMnTt3Ji4uDrB/pz09PQkODnZaV9/pkivsOAPceuut1KlTh6ioKNavX8+TTz7Jtm3b+OGHH0q9JgUVMUXfvn0d8y1atKB9+/bUqVOHb7/9lrvuusvEykQu3S233OKYb968OS1atKB+/frMnz+fnj17mlhZxTVq1Cg2btyovmyl7HzH+Z577nHMN2/enMjISHr27MmuXbuoX79+qdakUz9nCQsLw2q1FugxfuTIESIiIkyqqmoIDg6mUaNG7Ny50+xSKq3877C+32WvXr16hIWF6ftdQg8++CCzZs1i3rx51KpVy7E8IiKCrKwsEhMTndbXd7pkznecC9O+fXuAMvlOK6icxdPTkzZt2jB37lzHstzcXObOnUvHjh1NrKzyS01NZdeuXURGRppdSqUVExNDRESE0/c7OTmZFStW6Ptdyg4cOMCJEyf0/S4mwzB48MEHmTFjBn/99RcxMTFOr7dp0wYPDw+n7/S2bdvYt2+fvtPFcLHjXJi1a9cClMl3Wqd+zjF27FiGDx9O27ZtadeuHRMmTCAtLY077rjD7NIqlccee4wBAwZQp04dDh06xLPPPovVamXIkCFml1ahpaamOv0PJz4+nrVr1xISEkLt2rUZM2YM//vf/2jYsCExMTE888wzREVFcd1115lXdAV0oeMcEhLCf//7XwYNGkRERAS7du3iiSeeoEGDBvTp08fEqiueUaNG8fXXX/Pjjz8SEBDg6HcSFBSEj48PQUFB3HXXXYwdO5aQkBACAwN56KGH6NixIx06dDC5+orjYsd5165dfP311/Tr14/Q0FDWr1/PI488Qrdu3WjRokXpF2jKtUbl3LvvvmvUrl3b8PT0NNq1a2csX77c7JIqnZtvvtmIjIw0PD09jZo1axo333yzsXPnTrPLqvDmzZtnAAWm4cOHG4Zhv0T5mWeeMWrUqGF4eXkZPXv2NLZt22Zu0RXQhY5zenq6cdVVVxnVq1c3PDw8jDp16hgjR440EhISzC67winsGAPG559/7lgnIyPDeOCBB4xq1aoZvr6+xvXXX28cPnzYvKIroIsd53379hndunUzQkJCDC8vL6NBgwbG448/biQlJZVJfZa8IkVERETKHfVRERERkXJLQUVERETKLQUVERERKbcUVERERKTcUlARERGRcktBRURERMotBRUREREptxRURKTCqlu3LhaLBYvFUuB+L4XZs2ePY/1WrVqVen0icukUVETkkiQkJPDQQw9Rr149vLy8iI6OZsCAAU73XylNzz//PIcPHyYoKOii60ZHR3P48GEeffTRMqhMRFxB9/oRkRLbs2cPnTt3Jjg4mNdee43mzZuTnZ3N7NmzGTVqFFu3bi31GgICAop8p1yr1UpERAT+/v6lXJWIuIpaVESkxB544AEsFgt///03gwYNolGjRsTGxjJ27FiWL1/O5MmTHadazp6ee+45AFauXEnv3r0JCwsjKCiI7t27s2bNGsf2DcPgueeeo3bt2nh5eREVFcXo0aMvWNPevXsZMGAA1apVw8/Pj9jYWH799dfSPAwiUooUVESkRE6ePMnvv//OqFGj8PPzK/B6cHAwN998M4cPH3ZMU6dOxd3dnc6dOwOQkpLC8OHDWbx4McuXL6dhw4b069ePlJQUAL7//nveeustPvroI3bs2MHMmTNp3rz5BesaNWoUmZmZLFy4kA0bNvDKK6+oBUWkAtOpHxEpkZ07d2IYBk2aNDnvOj4+Pvj4+ACwa9cuRo0axUsvvUTv3r0B6NGjh9P6kyZNIjg4mAULFnDNNdewb98+IiIi6NWrFx4eHtSuXZt27dpdsK59+/YxaNAgR6CpV6/epXxMETGZWlREpESKc+P1pKQkrrnmGvr378/jjz/uWH7kyBFGjhxJw4YNCQoKIjAwkNTUVPbt2wfA4MGDycjIoF69eowcOZIZM2aQk5NzwX2NHj2a//3vf3Tu3Jlnn32W9evXl+wDiki5oKAiIiXSsGFDLBbLRTvM2mw2br75ZgIDA5k0aZLTa8OHD2ft2rW8/fbbLF26lLVr1xIaGkpWVhZgv0pn27ZtfPDBB/j4+PDAAw/QrVs3srOzz7u/u+++m927d3P77bezYcMG2rZty7vvvnvpH1hETKGgIiIlEhISQp8+fXj//fdJS0sr8Hr+uCaPPPIIGzZsYObMmXh7ezuts2TJEkaPHk2/fv2IjY3Fy8uL48ePO63j4+PDgAEDeOedd5g/fz7Lli1jw4YNF6wtOjqa++67jx9++IFHH32Ujz/++NI+rIiYRn1URKTE3n//fTp37ky7du14/vnnadGiBTk5OcyZM4eJEyfyxBNP8MEHHzBjxgwsFgsJCQkA+Pv74+/vT8OGDfniiy9o27YtycnJPP74444+LQCTJ0/GZrPRvn17fH19+fLLL/Hx8aFOnTrnrWnMmDH07duXRo0acerUKebNm0fTpk1L/ViISOlQi4qIlFi9evVYs2YNV155JY8++ihxcXH07t2buXPnMnHiRBYsWIDNZmPgwIFERkY6ptdffx2ATz/9lFOnTtG6dWtuv/12Ro8eTXh4uGP7wcHBfPzxx3Tu3JkWLVrw559/8vPPPxMaGnremmw2G6NGjaJp06ZcffXVNGrUiA8++KDUj4WIlA6LUZwecSIi5UjdunUZM2YMY8aMKdb7nnvuOWbOnMnatWtLpS4RcR0FFRGpsOrWrcvhw4fx8PDg4MGDFx1Gf9++fTRr1oysrCyaNWumoCJSASioiEiFtXfvXscVQPXq1cPN7cJns3NyctizZw+A475EIlK+KaiIiIhIuaXOtCIiIlJuKaiIiIhIuaWgIiIiIuWWgoqIiIiUWwoqIiIiUm4pqIiIiEi5paAiIiIi5ZaCioiIiJRbCioiIiJSbv0/U6XkKL7jdEIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t=np.linspace(0,25,200)\n", + "\n", + "C1 = float(0.00047)\n", + "C2 = float(0.00094)\n", + "R = float(6250)\n", + "U_z = 6.0\n", + "\n", + "\n", + "\n", + "#ładowanie kondensatora\n", + "\n", + "\n", + "Uc1 = U_z * (1 - (pow(np.e,-t/(R*C1))))\n", + "Uc2 = U_z * (1 - (pow(np.e,-t/(R*C2))))\n", + "\n", + "plt.figure()\n", + "plt.plot(t,Uc1,label = \"470\\u03BCF\")\n", + "plt.plot(t,Uc2,label = \"940\\u03BCF\")\n", + " \n", + "plt.title(\"Wykres ładowania kondensatora\")\n", + "plt.xlabel(\"Czas[s]\") \n", + "plt.ylabel(\"Napięcie[V]\")\n", + "plt.legend(loc = \"lower right\")\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "#rozładowanie kondensatora\n", + "\n", + "\n", + "U_c1 = U_z*pow(np.e,-t/(R*C1)) \n", + "U_c2 = U_z*pow(np.e,-t/(R*C2))\n", + "\n", + "\n", + "plt.figure()\n", + "plt.plot(t,U_c1,label = \"470\\u03BCF\")\n", + "plt.plot(t,U_c2,label = \"940\\u03BCF\")\n", + "\n", + "plt.title(\"Wykres rozładowania kondensatora\")\n", + "plt.xlabel(\"Czas[s]\")\n", + "plt.ylabel(\"Napięcie[V]\")\n", + "plt.legend(loc = \"upper right\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} -- GitLab