Politechnika Wrocławska
Wydział Elektroniki
Instytut Telekomunikacji i Akustyki

Rozprawa doktorska

Parametryczne transformacje
czasowo-częstotliwościowe
sygnałów losowych

mgr inż. Bogusław Szłachetko

Promotor:
dr hab. inż. Ryszard Makowski
prof. nadzw.

Wrocław 2001
Mojej żonie Małgosie!
Spis treści

Wykaz ważniejszych oznaczeń iv

1 Wstęp 1
 1.1 Definicje i założenia wstępne 2
 1.1.1 Model sygnałów losowych 2
 1.1.2 Stacjonarność i niestacjonarność sygnału 3
 1.1.3 Zagadnienie estymacji 4
 1.1.4 Skończona moc i energia sygnału 5
 1.1.5 Transformata, transformacja, JTFT 6
 1.2 Teza pracy 7
 1.3 Układ pracy 7

2 Przegląd transformacji czasowo-częstotliwościowych 8
 2.1 Widmo sygnału stacjonarnego 8
 2.1.1 Wybrane metody nieparametryczne 9
 2.1.2 Wybrane metody parametryczne 11
 2.2 JTFT dla sygnałów niestacjonarnych 14
 2.2.1 Oczekiwane własności JTFT 15
 2.2.2 Zasada nieoznaczoności 17
 2.3 Nieparametryczne JTFT 17
 2.4 Parametryczne JTFT 19
 2.4.1 JTFT bazująca na modelu AR 19
 2.4.2 JTFT bazująca na wielokomponentowym modelu sygnału 23
 2.4.3 Estymacja mocy komponentów 26
 2.5 Podsumowanie 27

3 Adaptacyjne wyznaczanie parametrycznych transformat czasowo-częstotliwościowych 28
 3.1 Model AR ze zmiennym współczynnikiem zapominania - algorytm aAR 28
4 Badania symulacyjne

4.1 Procedury estymacji częstotliwości i miary jakości estymatorów
4.2 Ogólne warunki przeprowadzonych symulacji
4.3 Porównanie algorytmu AR ze stałym współczynnikiem zapomniania i proponowanego algorytmu aAR
4.4 Porównanie klasycznego algorytmu ESPRIT z proponowanym algorytmem aESPIRT
4.5 Ocena jakości estymatorów częstotliwości dla sygnałów niestacjonarnych
4.5.1 Jakość estymacji przy liniowej zmianie częstotliwości komponentów
4.5.2 Jakość estymacji przy nieliniowej zmianie częstotliwości komponentów
4.5.3 Jakość estymacji przy skokowej zmianie częstotliwości komponentów
4.5.4 Całkowity zanik jednej ze składowych
4.6 Koszt obliczeniowy proponowanych algorytmów
4.7 Podsumowanie

5 Badanie rzeczywistych sygnałów

5.1 Sygnały telekomunikacyjne
5.2 Sygnały radarowe
5.3 Sygnały sejsmiczne
5.4 Sygnały mowy
5.5 Podsumowanie

6 Wnioski

A Algorytm ESPRIT
A.1 Dekompozycja macierzy autokorelacji względem wartości własnych
A.2 Algorytm ESPRIT

B Iteracja na podprzestrzeniach
B.1 Iteracja prosta
Wykaz ważniejszych oznaczeń

\(x(n)\) - dyskretny sygnał lub proces losowy
\(X(n)\) - dyskretny sygnał analityczny
\(x'(n)\) - sygnał zespolony sprzężony
\(s(n)\) - dyskretny sygnał sinusoidalny
\(v(n)\) - dyskretny szum gaussowski
\(\sigma_v^2\) - wariancja szumu gaussowskiego
\(w(n)\) - okno w dziedzinie czasu
\(W(f)\) - okno w dziedzinie częstotliwości
\(A_k\) - amplituda k-tej składowej sinusoidalnej
\(f_k\) - częstotliwość k-tej składowej sinusoidalnej
\(\phi_k\) - faza k-tej składowej sinusoidalnej
\(r(l)\) - funkcja autokorelacji
\(\Theta\) - dowolna wielkość rzeczywista
\(\hat{\Theta}\) - estymator wielkości rzeczywistej
\(\epsilon^2\) - błąd średniokwadratowy estymatora
\(b\) - obciążenie estymatora
\(d^2\) - wariancja estymatora
\(E\) - energia sygnału
\(P\) - moc sygnału
\(f\) - częstotliwość unormowana
\(F_s\) - częstotliwość próbkowania
\(X(f)\) - transformata Fouriera’a sygnału \(x(n)\)
\(P(f)\) - widmowa gęstość mocy sygnału
\(X(n, f)\) - transformata Fouriera’a niestacjonarnego sygnału \(x(n)\) w chwili \(n\)
\(r(n; l)\) - lokalna funkcja autokorelacji w chwili \(n\)
\(P(n, f)\) - transformata czasowo-częstotliwościowa
\(f_w(n)\) - częstotliwość chwilowa
\(t_g(f)\) - opóźnienie grupowe
\(a(n), b(n)\) - parametry modelu ARMA
\(c_{2x}(n)\) - kowariancja procesu losowego \(x\) w chwili \(n\)
\(c_{3x}(n)\) - kumulant trzeciego rzędu w chwili \(n\) procesu \(x\)
λ - współczynnik zapominania
ρ_k(n) - k-ty współczynnik odbicia, zwany współczynnikiem Schur’a
e_k(n) - błąd prognozy w przód w algorytmie LeeMorf’a
r_k(n) - błąd prognozy w tył w algorytmie LeeMorf’a
\mathbb{R}^{N\times M} - przestrzeń liczb rzeczywistych rozmiaru \(N \times M \)
\mathbb{C}^{N\times M} - przestrzeń liczb zespolonych rozmiaru \(N \times M \)
x - wektor próbek sygnału
\mathbf{R}(n) - zmienna w czasie macierz autokorelacji
λ_m - wartości własne macierzy
u_m - wektor własny macierzy
Λ - macierz diagonalna zawierająca wartości własne
\mathbf{B}(n) - zmienna w czasie macierz kolumnami ortonormalną
\mathbb{E}\{\cdot\} - operator wartości oczekiwanej
\mathbb{P}(\cdot) - prawdopodobieństwo zdarzenia
\forall - kwantyfikator - dla każdego
\in (\cdot) - należy do zbioru (przedziału)
\notin (\cdot) - nie należy do zbioru (przedziału)
\{\cdot\}^T - transpozycja w odniesieniu do wektorów i macierzy
\{\cdot\}^H - transpozycja i sprzężenie w odniesieniu do wektorów i macierzy zawierających wartości zespolone
\|\cdot\| - norma euklidesowa wektora lub macierzy
\|\cdot\|_F - norma Frobenius’a wektora lub macierzy
Rozdział 1

Wstęp

Niemiecka praca dotyczy analizy zmiennego w czasie widma dyskretnych, losowych sygnałów niestacjonarnych oraz algorytmów pozwalających na wyznaczenie takiego widma na podstawie parametrów modelu przetwarzanego sygnału.

Rzeczywiste sygnały występujące w przyrodzie są sygnałami ciągłymi. Jednak efektywne przetwarzanie możliwe jest jedynie dla sygnałów dyskretnych. Przyjmijmy, że dla analizowanych sygnałów nie ma problemów z prze- kształceniem rzeczywistego sygnału ciągłego w jego dyskretną reprezentację.

Klasycznie sygnały losowe traktowane są jako stacjonarne, co dla większości jest uzasadnione. Istnieje jednak wiele sygnałów dla których założenie stacjonarności jest nieuzasadnione. Takimi sygnałami są sygnały radarowe, sygnały mowy, sygnały sejsmiczne itd. Dla nich opracowano całą grupę algorytmów, której ważnymi elementami są transformacje czasowo-częstotliwościowe. W wyniku takiej transformacji otrzymujemy transformację czasowo-częstotliwościową, która pozwala określić jak widmo sygnału zmienia się w czasie.

Ogólnie biorąc, transformaty czasowo-częstotliwościowe można podzielić, ze względu na rodzaj estymacji zmiennego w czasie widma sygnału, na trans-
Rysunek 1.1: Uproszczony podział JTFT [55].

formaty parametryczne i nieparametryczne [55]. Transformaty nieparametryczne można podzielić dalej, uwzględniając strukturę modelu, na liniowe i nieliniowe, oraz ze względu na występowanie lub niewystępowanie skalowania argumentu czasu lub częstotliwości, na skalogramy i spektrogramy. Ilustruje to rysunek 1.1

1.1 Definicje i założenia wstępne

1.1.1 Model sygnałów losowych

Cyfrowe przetwarzanie sygnałów to zbiór olbrzymiej ilości różnych metod. Wiele metod ma bardzo szerokie zastosowania, ale istnieje również wiele algorytmów opracowanych specjalnie dla wybranej klasy sygnałów. Te same metody stosowane do różnych klas sygnałów mogą dawać różne wyniki - raz lepsze, raz gorsze.

Losowy model sinusoidalny może być zastosowany do wystarczająco dokładnego opisu wielu sygnałów rzeczywistych, takich jak: sygnały komunikacyjne, radarowe, niektóre fragmenty sygnału mowy ludzkiej i wiele innych. W modelu takim zakłada się, że sygnał składa się z sumy jednego lub kilku
komponentów sinusoidalnych i szumu:

\[x(n) = s(n) + v(n); \quad s(n) = \sum_{m=1}^{M} A_m(n)e^{j(2\pi f_m(n) + \phi_m(n))} \]

gdzie \(s(n) \) oznacza wielokomponentowy zespółny dyskretny sygnał bez szumu, \(v(n) \) oznacza zespółny szum, a \(A_m(n) \), \(f_m(n) \) i \(\phi_m(n) \) oznaczają procesy losowe interpretowane odpowiednio jako amplituda, częstotliwość i faza \(m \)-tej składowej [53][46]. W zależności 1.1 przyjęto, że częstotliwość próbkowania \(F_s = 1 \). Wtedy \(f_m(n) \) są tak zwanymi częstotliwościami unormowanymi z przedziału \([-0.5, 0.5]\). Ze względu na stosowane algorytmy i prostszy zapis matematyczny założono, że dysponujemy sygnałami zespółonymi. Jednak sygnały spotykane w przyrodzie mają wartości rzeczywiste. Nie jest to istotną przeszkodą, gdyż sygnały rzeczywiste można na wiele sposobów przekształcić w sygnały zespółone. Przykładem może być często używany sygnał analityczny uzyskany przez transformację Hilberta [8]. Jeżeli przez \(x(n) \) oznaczmy sygnał o wartościach rzeczywistych, to sygnał analityczny można wyznaczyć następująco:

\[X(n) = x(n) + \frac{j}{\pi} \sum_{k=0}^{N-1} \frac{x(k)}{n-k} \]

1.1.2 Stacjonarność i niestacjonarność sygnału

Definicja stacjonarności określa, że proces stochastyczny jest stacjonarny w sensie ściślim, jeżeli jego rozkład prawdopodobieństwa nie zależy od przesunięcia punktu zerowego czasu [35]. Inaczej mówiąc, proces \(x(n) \) i proces \(x(n + k) \) mają identyczny rozkład prawdopodobieństwa dowolnego rzędu:

\[F_x(x_1, \ldots, x_m; n_1, \ldots, n_m) = F_x(x_1, \ldots, x_m; n_1 + k, \ldots, n_m + k) \]

da dowolnego przesunięcia w czasie \(k \). Wynika stałą między innymi, że funkcja gęstości prawdopodobieństwa dowolnego rzędu nie zmienia się w czasie. Otrzymujemy więc następującą zależność:

\[f_x(x_1, \ldots, x_m; n_1, \ldots, n_m) = f_x(x_1, \ldots, x_m; n_1 + k, \ldots, n_m + k) \]

Konsekwencjami stacjonarności w sensie ściślim są w szczególności [35]:

- stała wartość średnia:

\[\mathbb{E}\{x(n)\} = \eta = \text{const} \]

3
• zależność funkcji autokorelacji jedynie od różnicy czasów:

\[l = n_1 - n_2; \]

\[\mathbb{E}\{x(n_1)x^*(n_2)\} = \mathbb{E}\{x(n+l)x^*(n)\} = r(l) = r(-l) \]

(1.6a) (1.6b)

Z tego punktu widzenia, żaden skończony w czasie sygnał rzeczywisty nie może być uznanym za stacjonarny. W praktyce wprowadza się pojęcie lokalnej stacjonarności, które oznacza, że w danym przedziale czasu rozkład prawdopodobieństwa procesu nie ulega zmianie. Jednak nawet lokalna stacjonarność jest niepraktyczna, gdyż trzeba by znać wszystkie funkcje gęstości prawdopodobieństwa nieskończonego rzędu. Z tego względu często wykorzystuje się pojęcie słabej stacjonarności, zwane czasem stacjonarnością w szerszym sensie. Proces jest słabo stacjonarny jeżeli zachodzą zależności: 1.5, 1.6b [35]. W dalszej części pracy ilokroć zostanie użyty termin sygnał/process stacjonarny będzie to oznaczać stacjonarność w szerszym sensie (słaba stacjonarność).

Praca dotyczy losowych sygnałów niestacjonarnych o zerowej wartości średniej, takich, dla których funkcje gęstości prawdopodobieństwa rzędu drugiego i wyższych zmieniają się w czasie obserwacji. Nie wyklucza to możliwości, że badany sygnał, w przedziałach czasu krótkich niż cały czas obserwacji, jest lokalnie słabo stacjonarny.

1.1.3 Zagadnienie estymacji

Nieodłącznym elementem analizy sygnałów losowych jest zagadnienie estymacji. Zakładana, że badany sygnał jest erdyczny. Wpracza to znacznie wyznaczanie cech probabilistycznych, bowiem z definicji erdyczności wynika możliwość wyznaczenia statystyk procesu z jego pojedynczej obserwacji [29][35]. Z definicji erdyczności wynika w szczególności, że tylko proces stacjonarny może być erdyczny. Przypominajmy, że praca dotyczy sygnałów niestacjonarnych, co wyklucza erdyczność procesu. Tak więc, aby uzyskać estymatory dobrej jakości należy je wyznaczać metodą uśredniania po zbiorze realizacji procesu. Jednak w większości sytuacji liczba dostępnych realizacji jest zbyt mała, a często dysponujemy tylko jedną realizacją. W takich sytuacjach zakładana jest lokalna stacjonarność, a estymator wyznaczany jest przez uśrednienie po czasie w przedziale czasowym, w którym ta stacjonarność jest zakładana.

Zagadnienie estymacji polega na możliwie dokładnym wyznaczeniu wybranej statystyki (np. widmowej gęstości mocy sygnału) na podstawie zbioru \(N \)-kolejnych próbek \(\{x(0), x(1), ..., x(N - 1)\} \) sygnału losowego. Za pomocą odpowiednich przekształceń otrzymujemy estymator czyli pewne przybliżenie wybranej statystyki. Powszechnie przyjmuje się, że integralną częścią
estymacji jest ocena jej jakości. Z tym przekonaniem wiąże się kilka problemów [9][29]. Najważniejszy z nich to wybór kryterium jakości. Wybór ten jest w znacznej części subiektywny, ponieważ nie istnieje uniwersalna dobra miara jakości estymatora.

Znanych jest wiele różnego rodzaju kryteriów jakości takich jak: minimum błędu średniokwadratowego, największej wiarygodności, maksymalnego prawdopodobieństwa, minimax, czy minimum/maksimum entropii. Najpopularniejsze miary jakości estymatora to:

- błąd średniokwadratowy:

\[e^2 = E\{(\Theta - \hat{\Theta})^2\} \]

(1.7)

- obciążenie:

\[b = E\{\Theta - E\{\hat{\Theta}\}\} \]

(1.8)

- wariancja:

\[d^2 = E\{(\hat{\Theta} - E\{\hat{\Theta}\})^2\} = E\{\hat{\Theta}^2\} - E^2\{\hat{\Theta}\} \]

(1.9)

Istnieje związek pomiędzy błędem średniokwadratowym, obciążeniem i wariancją:

\[e^2 = b^2 + d^2 \]

(1.10)

Szczegółowe omówienie i wyprawdzenia powyższych zależności można znaleźć w [3].

Ponadto często używane jest pojęcie zgodności estymatora. Estymator nazywamy zgodnym, jeśli dla rosnącej liczby danych estymator jest zbliżony do estymowanej wielkości z prawdopodobieństwem jeden [44].

\[N \to \infty \Rightarrow P(E\{\hat{\Theta}\} \to \Theta) = 1 \]

(1.11)

1.1.4 Skończona moc i energia sygnału

Tradycyjnie w analizie sygnałów rozróżnia się sygnały o skończonej energii i sygnały o skończonej mocy. Szczegółową analizę tego zagadnienia można znaleźć w [28]. Dla jasności dalszej części pracy konieczne jest jednak przytoczenie definicji.

Sygnały o skończonej energii to sygnały, których całkowita energia jest ograniczona.

\[E_x = \sum_{n=-\infty}^{\infty} |x(n)|^2 < \infty \]

(1.12)
skąd wynika, że:

\[E_x < \infty \quad \Rightarrow \quad \mathbb{E}\{P_x\} = 0 \]

(1.13)

Natomiast sygnały o skończonej mocy mają ograniczoną moc średnią:

\[\mathbb{E}\{P_x\} = \mathbb{E}\{ \lim_{N \to \infty} \frac{1}{2N + 1} \sum_{n=-N}^{N} |x(n)|^2 \} < \infty \]

(1.14)

skąd wynika, że:

\[0 < \mathbb{E}\{P_x\} < \infty \quad \Rightarrow \quad E_x = \infty \]

(1.15)

Z przytoczonych definicji wynika w szczególności, że sygnały o skończonym czasie trwania są sygnałami o skończonej energii i zerowej mocy średniej. Należy zauważyć, że nigdy nie dysponujemy sygnałem o nieskońconym czasie trwania. Nawet jeżeli istnieją możliwości techniczne rejestracji sygnału w nieskończonej przyszłości, to kiedyś nastąpi start procesu rejestracji, więc nie znamy sygnału w nieskończoną przyszłość. Mimo to, w wielu przypadkach zakłada się, że zarejestrowany sygnał jest fragmentem nieskończonego w czasie sygnału o skończonej mocy średniej.

Ogólnie przyjęto, że sygnały przejściowe (impulsowe), które trwają krócej niż czas obserwacji są sygnałami o skończonej energii. W przypadku innych sygnałów mimo skończonego czasu obserwacji, zakłada się, że są sygnałami o skończonej mocy. W konsekwencji, w pracy rozważana będzie moc badanych sygnałów, a nie ich energii.

1.1.5 Transformata, transformata, JTFT

1.2 Teza pracy

Proponowane parametryczne transformacje czasowo-częstotliwościowe, dla wybranej grupy sygnałów, charakteryzują się lepszymi właściwościami niż transformacje niaparametryczne. Przez lepsze właściwości rozumie się większe dokładność w dziedzinie czasu, większą dokładność w dziedzinie częstotliwości, prawie zerowe artefakty i/lub mniejszą złożoność obliczeniową.

1.3 Układ pracy

Struktura niniejszej pracy jest następująca.

Rozdział drugi zawiera przegląd istniejących algorytmów JTFT parametrycznych i niaparametrycznych. W rozdziale tym przytoczone również definicje oczekiwanych własności transformat czasowo-częstotliwościowych w odniesieniu do metod parametrycznych i niaparametrycznych. Własności te pozwalają ocenić jakość JTFT. W rozdziale trzecim zawarto propozycję adaptacyjnych algorytmów wyznaczania JTFT dla modelu autoregresji i dla modelu sygnału wielokomponentowego z wykorzystaniem rozkładu macierzy autokorelacji względem wartości własnych. Rozdział czwarty zawiera wyniki badań symulacyjnych wykonanych dla sygnałów modelowych. Wyniki analiz wybranych sygnałów rzeczywistych zostały zaprezentowane w rozdziale piątym. Podsumowanie całej pracy, w tym wnioski ogólne i wykaz oryginalnych rezultatów niniejszej pracy zawarto w rozdziale szóstym. Wnioski szczegółowe dyskutowane są przy opisie poszczególnych eksperymentów.
Rozdział 2

Przegląd transformacji czasowo-częstotliwościowych

2.1 Widmo sygnału stacjonarnego

Wszystkie transformacje czasowo-częstotliwościowe są rozwinięciem transformacji częstotliwościowych. Większość własności transformat czasowo-częstotliwościowych wynika z właściwości analogicznych transformat częstotliwościowych, dlatego poniżej opisano parametryczne i nieparametryczne transformacje częstotliwościowe.

Załóżmy, że dysponujemy naborem próbek \(\{x(0), x(1), ..., x(N)\} \) losowego sygnału stacjonarnego, będącego realizacją pewnego ergodycznego procesu stochastycznego. Transformata Fouriera takiego sygnału określona jest zależnością:

\[
X(f) = \sum_{n=0}^{N} x(n)e^{-j2\pi fn} \tag{2.1}
\]

Istnieją dwie definicje widmowej gęstości mocy sygnału - w skrócie widma [46]. Pierwsza wykorzystuje wprost transformację Fouriera sygnału:

\[
P_x(f) = \lim_{N \to \infty} \mathbb{E}\left\{ \frac{1}{N}|X(f; N)|^2 \right\} = \lim_{N \to \infty} \mathbb{E}\left\{ \frac{1}{N} \left| \sum_{n=0}^{N} x(n)e^{-j2\pi fn} \right|^2 \right\} \tag{2.2}
\]

Druga definicja bazuje na funkcji autokorelacji \(r(l) \) (zależność 1.6b):

\[
P_x(f) = \sum_{l=-\infty}^{\infty} r(l)e^{-j2\pi fl} \tag{2.3}
\]
W literaturze rozważa się wiele własności widmowej gęstości mocy. Ze względu na dalsze rozważania istotne są trzy z nich:

- Widmowa gęstość mocy jest nieujemna i przyjmuje tylko wartości rzeczywiste:
 \[\forall f \quad P(f) \geq 0 \quad (2.4) \]

- Widmowa gęstości mocy sygnałów dyskretnych jest okresowa z okresem równym częstotliwości próbkowania \(F_s \):
 \[\forall k \in \mathbb{N} \quad P(f) = P(f \pm kF_s) \quad (2.5) \]
 gdzie \(\mathbb{N} \) oznacza zbiór liczb naturalnych

- Dla sygnałów o wartościach rzeczywistych widmowa gęstość mocy jest funkcją parzystą względem \(f = 0 \):
 \[\forall f \quad P(f) = P(-f) \quad (2.6) \]

Uwagi:

- W niniejszej pracy przyjęto konwencję, że \(F_s = 1 \), co pozwala ograniczyć wartość częstotliwości \(f \) do przedziału \([-0.5, 0, 5]\).

- Należy zauważyć, że dla sygnałów o wartościach zespolonych nie zachodzi równość 2.6, chyba że część urojona takiego sygnału jest równa zero.

2.1.1 Wybrane metody nieparametryczne

Nieparametryczne metody estymacji widma sygnałów stacjonarnych bazują na zależnościach 2.2 i 2.3. Dysponując skończonym naborem próbek sygnału \(\{x(0), x(1), \ldots, x(N-1)\} \), przy założeniu, że sygnał jest stacjonarny i ergodyczny, można wyznaczyć estymator widmowej gęstości mocy z zależności:

\[
\hat{P}_{\text{PER}}(f) = \sum_{l=-(N-1)}^{N-1} r(l)e^{-j2\pi fl} \quad (2.7a)
\]

lub

\[
\hat{P}_{\text{PER}}(f) = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)e^{-j2\pi fn}|^2 \quad (2.7b)
\]
Dla skończonego N periodogram 2.7 pozwala wyznaczyć obciążony estymator widma, ponieważ wartość oczekiwana periodogramu jest spłotem rzeczywistego widma z oknem Bartlett’a [22][30]:

$$
\mathbb{E}\{\hat{P}_{\text{PER}}(f)\} = \int_{-1/2}^{1/2} W_B(f - \varphi)P_x(\varphi)d\varphi
$$ \hspace{1cm} (2.8)

gdzie $w_B(n)$ jest oknem trójkątnym Bartlett’a:

$$
w_B(n) = \begin{cases}
1 - |n|/N & |n| < N \\
0 & |n| \geq N
\end{cases}
$$ \hspace{1cm} (2.9a)

$$
W_B(f) = 1/N \left(\frac{\sin \pi f N}{\sin \pi f}\right)^2
$$ \hspace{1cm} (2.9b)

Łatwo można pokazać, że periodogram jest estymatorem zgodnym gdyż [22]:

$$
\lim_{N \to \infty} \mathbb{E}\{\hat{P}_{\text{PER}}(f)\} = P_x(f)
$$ \hspace{1cm} (2.10)

Jednak periodogram charakteryzuje się stosunkowo dużą variancją. Ponadto variancja ta jest stała i niezależna od N. W konsekwencji zwiększenie naboru próbek nie prowadzi do zmniejszenia variancji.

Istnieje wiele odmian periodogramu, takich jak uśredniony periodogram, czy uśredniony zmodyfikowany periodogram. Metody te poprawiają własności statystyczne otrzymanego estymatora widmowej gęstości mocy. Metodą często omawianą odrębnie jest wygladowy periodogram, znany pod nazwą metody Blackman’a-Tukey’a. Twórcy tej metody zauważyli, że estymator funkcji autokorelacji:

$$
\hat{r}(l) = \frac{1}{2N + 1} \sum_{n=-(N-1)}^{N-1} x(l + n)x^*(l)
$$ \hspace{1cm} (2.11)

sygnału stacjonarnego użyty do wyznaczenia periodogramu, z powodu ograniczenia liczby danych jest obciążony. Wartość oczekiwana estymatora autokorelacji można opisać zależnością:

$$
\mathbb{E}\{\hat{r}(l)\} = \frac{N - |l|}{N} r(l)
$$ \hspace{1cm} (2.12)

Można zauważyć, że variancja estymatora autokorelacji rośnie ze wzrostem $|l|$. W związku z tym Blackman i Tukey zaproponowali, aby w zależności 2.3 wprowadzić okno korelacyjne.

$$
\hat{P}_{\text{BT}}(f) = \sum_{l=-L}^{L} w(l)\hat{r}(l)e^{-j2\pi fl}
$$ \hspace{1cm} (2.13)

Okno korelacyjne spełnia następujące warunki:
• okno przyjmuje jedynie wartości rzeczywiste z przedziału $[0, 1]$

$$0 \leq w(l) \leq w(0) = 1$$ \hspace{1cm} (2.14)

• jest parzyste

$$w(-l) = w(l)$$ \hspace{1cm} (2.15)

• jest ograniczone

$$w(l) = 0 \text{ dla } |l| > L$$ \hspace{1cm} (2.16)

Metoda Blackman’a-Tukey’a, podobnie jak periodogram jest asymptotycznie zbieżna [22][30]:

$$
\mathbb{E}\{\hat{P}_{BT}(f)\} \approx \int_{-1/2}^{1/2} W(f - \varphi)P_{PER}(\varphi)\,d\varphi
$$ \hspace{1cm} (2.17)

Natomiast wariancja widma $\hat{P}_{BT}(f)$ określona jest zależnością [22]:

$$
\text{d}^2\{\hat{P}_{BT}(f)\} \approx \frac{2L}{3N}P_z^2(f)
$$ \hspace{1cm} (2.18)

gdzie L jest długością okna korelacyjnego (обыkle przyjmuje się $L = N/5$), a N ilością próbek sygnału.

2.1.2 Wybrane metody parametryczne

Metody nieparametryczne nie wykorzystują żadnej wiedzy o badanym sygnale. Zwykle jednak wiadomo z jaką klasą sygnału mamy do czynienia i w związku z tym można poczynić pewne założenia. Bazując na tych założeniach można wybrać odpowiedni model procesu stochastycznego i wyznaczyć jego parametry. Podejście takie nazywane jest parametryzacją sygnału losowego.

Estymacja widma metodą parametryczną przebiega zwykle w trzech etapach:

• wybranie odpowiedniego modelu,

• wyznaczenie estymatorów parametrów tego modelu,

• wyznaczenie widma w oparciu o estymatory parametrów modelu.

Jeżeli wybrany model jest adekwatny do badanego sygnału i wyznaczone zostaną jakościowo dobre estymatory parametrów modelu to uzyskane widmo będzie charakteryzowało się większą rozdzielczością i dokładnością niż widmo nieparametryczne. Ponadto, często bazując na znacznie mniejszym naborze
próbek, można uzyskać estymator widma o jakości porównywalnej lub lepszej niż w przypadku nieparametrycznym [22].

Kluczowym zagadnieniem jest tu wybór odpowiedniego modelu w zależności od badanego sygnału. Jednym z możliwych do wyboru jest model ARMA. W modelu tym zakłada się, że obserwowany sygnał jest sygnałem wyjściowym systemu pobudzonego szumem białym o zerowej średniej i wariancji σ_v^2. System taki opisany jest zależnością:

$$x(n) = -\sum_{k=1}^{P} a(k)x(n-k) + \sum_{k=0}^{Q} b(k)v(n-k) \quad (2.19)$$

gdzie $v(n)$ jest szumem pobudzającym system, natomiast $a(k)$ i $b(k)$ są parametrami modelu ARMA. Wielkości P i Q określają rząd modelu. Uproszczeniem modelu ARMA są modele MA i AR opisane odpowiednio zależnościami:

$$x(n) = \sum_{k=0}^{Q} b(k)v(n-k) \quad (2.20)$$

$$x(n) = -\sum_{k=1}^{P} a(k)x(n-k) + v(n) \quad (2.21)$$

W literaturze [22][27][33][46][53] można znaleźć wyprowadzenia odpowiednich zależności pozwalających wyznaczyć widmową gęstość mocy dla tych modeli w przypadku stacjonarnym.

$$P_{ARMA}(f) = \sigma_v^2 \left| \frac{B(f)}{A(f)} \right|^2 \quad (2.22a)$$

$$P_{MA}(f) = \sigma_v^2 |B(f)|^2 \quad (2.22b)$$

$$P_{AR}(f) = \frac{\sigma_v^2}{|A(f)|^2} \quad (2.22c)$$

Wybierając dla badanego sygnału właściwy model należy kierować się następującymi zasadami:

- model MA jest właściwy, gdy widmo sygnału zawiera lokalne minima i brak jest wyraźnych maksimów w widmie;
- model AR jest właściwy, gdy widmo sygnału zawiera lokalne maksima a nie zawiera lokalnych minimmów;
- model ARMA należy stosować, gdy w widmie występują zarówno maksima jak i minima.
Rysunek 2.1: Widmo sumy dwóch komponentów sinusoidalnych i szumu; a), b), c), d), e), f) wyznaczone na podstawie 512 próbek sygnału; g), h), i) wyznaczone na podstawie 64 próbek.

W pracy rozważane są sygnały złożone z komponentów sinusoidalnych i szumu (zależność 1.1). Jednak w wielu zastosowaniach istotna jest prawidłowa estymacja parametrów jedynie komponentów sinusoidalnych, zaś szum jest zjawiskiem niepożądанныm. W takich sytuacjach wystarczająco jest model AR. Dla M rzeczywistych komponentów sinusoidalnych zwykle wystarczy model AR rzędu $2M$. Dla M komponentów zespolonych wystarczający jest model rzędu M [22].

Prawidłowy wybór rzędu modelu jest istotny, gdyż jeżeli zaproponuje się zbyt mały rzęd modelu AR $P < M$, wtedy w widmie niektóre komponenty będą niewidoczne. Natomiast pozostałe zmienią swoje położenie. Przykładem może być widmo z rysunku 2.1. Linią przerywaną czerwoną zaznaczono widmo wyznaczone przez transformację FFT, natomiast linią ciągłą niebieską zaznaczono widmo parametryczne uzyskane na podstawie modelu AR.

Inną z możliwości jest parametryzacja bazująca na estymacji parametrów modelu sygnału bezpośrednio z zależności 1.1. Metody te zwane są w literaturze metodami podprzestrzeni (ang. subspace method), ponieważ działają obserwowany sygnał na podprzestrzeni komponentów sinusoidalnych i podprzestrzeni szumu [53]. Czasami metody te zwane są również metodami wysokiej rozdzielczości ponieważ pozwalają na znalezienie częstotliwości składowych...

Wśród tych algorytmów wyróżnia się algorytm ESPRIT, ponieważ uzyskane estymatory częstotliwości dają asymptotycznie do granicy Cramer-Rao [46][53], przy porównywalnym, w stosunku do pozostałych metod podprzestrzeni, koszcie obliczeniowym. W dodatku A znajduje się szczegółowe wyprowadzenie algorytmu ESPRIT w wersjach LS i TLS. Wadą algorytmu ESPRIT jest to, iż zakłada on znajomość rzędu modelu M. Dla dużego stosunku sygnał-szum stosunkowo łatwo jest wyznaczyć rząd modelu, ponieważ wartości własne macierzy autokorelacji sygnału skojarzone z wektorami własnymi rozpinającymi przestrzeń sygnału są znacznie większe od wartości własnych skojarzonych z wektorami własnymi rozpinającymi przestrzeń szumu. Przy małym stosunku sygnał-szum ($SNR < 3dB$) obie grupy wartości własnych mają zbliżone wartości i trudno znaleźć jednoznaczne kryterium podziału na podprzestrzenie. Tę niedogodność można pokonać, wybierając M większe od ilości komponentów w sygnale, jednak należy wtedy estymować moc poszczególnych komponentów. Dla fałszywych komponentów moc ta będzie znacznie mniejsza od mocy rzeczywistych komponentów [1].

2.2 JTFT dla sygnałów niestacjonarnych

Łączna transformata czasowo-częstotliwościowa jest wynikiem transformacji sygnału z dziedziny czasu w dziedzinę czas-częstotliwość. Jeżeli sygnał obserwowany jest sygnałem losowym niestacjonarnym, to jego widmowa gęstość mocy zmienia się w czasie.

$$\hat{P}(n, f) = |X(n, f)|^2$$ (2.23)

Rozważmy przypadek sygnału wielokomponentowego niestacjonarnego danego zależnością 1.1. Estymator autokorelacji dla sygnału niestacjonarnego jest funkcją dwóch zmiennych:

$$\hat{r}(n, l) = \frac{1}{2K + 1} \sum_{k=-K}^{K} x(n + l + k)x^*(n + k)$$ (2.24)
gdzie $K \ll N$ i $l = \{0, \ldots, N - 1\}$, stąd po podstawieniu do zależności 2.3 otrzymujemy

$$
\hat{P}(n, f) = \sum_{l=-\infty}^{\infty} \hat{r}(n, l)e^{-j2\pi fl} = \sum_{l=0}^{N-1} \hat{r}(n, l)e^{-j2\pi fl}
$$

(2.25)

2.2.1 Oczekiwane własności JTFT

Łączna transformata czasowo-częstotliwościowa powinna spełniać pewne własności. Zebrano je i omówiono szczegółowo w pracy [8][20][55]. Nie wszystkie JTFT spełniają te własności. Dlatego własności te pozwalają dokonać właściwego wyboru JTFT do konkretnego zastosowania. Poniżej zostaną przytoczone jedynie najważniejsze z nich.

1. Własność zachowania chwilowej mocy sygnału:

$$
\sum_{f} P_{x}(n, f) = |x(n)|^2 = P_{x}(n)
$$

(2.26)

2. Własność zachowania widmowej gęstości mocy:

$$
\sum_{n} P_{x}(n, f) = |X(f)|^2 = P_{x}(f)
$$

(2.27)

3. Transformata przyjmuje tylko nieujemne wartości rzeczywiste:

$$
P(n, f) \geq 0
$$

(2.28)

4. Transformata zachowuje ograniczenie w dziedzinie czasu:

$$
\forall_{n\in[n_{1}, n_{2}]} \ x(n) = 0 \Rightarrow P_{x}(n, f) = 0
$$

(2.29)

5. Transformata zachowuje ograniczenie w dziedzinie: częstotliwości

$$
\forall_{f\notin[f_{1}, f_{2}]} \ X(f) = 0 \Rightarrow P_{x}(n, f) = 0
$$

(2.30)

6. Transformata zachowuje przesunięcie czasowe:

$$
y(n) = x(n + n_{0}) \Rightarrow P_{y}(n, f) = P_{x}(n + n_{0}, f)
$$

(2.31)

7. Transformata zachowuje przesunięcie częstotliwościowe:

$$
y(n) = x(n)e^{-j2\pi f_{0}n} \Rightarrow P_{y}(n, f) = P_{x}(n, f + f_{0})
$$

(2.32)
8. Transfornata zachowuje liniowe skalowanie:
\[\forall a > 0 \ y(n) = \sqrt{a} x(an) \Rightarrow P_y(n, f) = P_x(an, f/a) \] (2.33a)
\[\sum_n P_y(n, f) = |Y(f)|^2 = \frac{1}{a} |X(f/a)|^2 \] (2.33b)
\[\sum_f P_x(n, f) = |x(n)|^2 = a|x(an)|^2 \] (2.33c)

9. Transfornata zachowuje momenty czasowe:
\[\sum_n \sum_f n^k P_x(n, f) = \sum_n n^k|x(n)|^2 \] (2.34)

10. Transfornata zachowuje momenty częstotliwościowe:
\[\sum_f \sum_n f^k P_x(n, f) = \sum_f f^k|X(f)|^2 \] (2.35)

11. Transfornata umożliwia wyznaczenie oczekiwanej częstotliwości chwilowej: (ang. mean instantaneous frequency)
\[f_{in}(n) = \frac{\Delta \arg \{X(n)\}}{\Delta n} = \frac{1}{P_x(n)} \sum_f f P_x(n, f) \] (2.36)

gdzie \(X(n) \) oznacza sygnał analityczny

12. Transfornata umożliwia wyznaczenie opóźnienia grupowego:
\[t_g(f) = \frac{\Delta \arg \{X(f)\}}{\Delta f} = \frac{1}{P_x(f)} \sum_n nP_x(n, f) \] (2.37)

Jak widać wymagania stawiane idealnej transformacji czasowo-
częstotliwościowej są bardzo duże. Znane obecnie transformacje nie
spełniają wszystkich powyższych wymagań. Np. transformacja
Wigner-Ville’a dla sygnałów wielokomponentowych, podobnie jak
spektrogram, nie spełniają własności 2.29 i 2.30 [39]. Oczywiste jest
więc, że dobór konkretnej transformaty do konkretnego zastosowania
wymaga określenia, które własności są szczególnie istotne, a które
można pominać.

16
2.2.2 Zasada nieoznaczoności

Bardzo ważną miarą jakości JTFT jest rozdzielczość estymatora $\hat{P}(n, f)$ w dziedzinie czasu i w dziedzinie częstotliwości. Jest rzeczą ogólnie znaną, że sygnał o krótkim czasie trwania ma szerokie widmo, natomiast sygnał o wąskim widmie ma długi czas trwania. Nie istnieje sygnał, który przy bardzo krótkim czasie trwania będzie miał bardzo wąskie widmo. Wobec tego, jeżeli od estymatora JTFT oczekujemy bardzo dużej dokładności lokalizacji sygnału w dziedzinie czasu, musimy zgodzić się na małą dokładność lokalizacji w dziedzinie częstotliwości. Prawidłowość ta znana jest pod nazwą zasady nieoznaczoności (ang. uncertainty principle).

Ponieważ przyjęto, że obserwowany sygnał jest realizacją procesu losowego, więc wszystkie otrzymane wielkości są estymatorami wielkości rzeczywistykh. W szczególności częstotliwość chwilowa $f_{in}(n)$ jest wartością oczekivaną częstotliwości:

$$ f_{in}(n) = \mathbb{E}\{f\} = \frac{1}{P_x(n)} \sum_f f P_x(n, f) \tag{2.38} $$

i analogicznie opóźnienie grupowe $t_g(f)$ jest wartością oczekivaną czasu:

$$ t_g(f) = \mathbb{E}\{n\} = \frac{1}{P_x(f)} \sum_n n P_x(n, f) \tag{2.39} $$

Jeżeli przez d_f oznaczamy wariancję częstotliwości chwilowej, oraz przez d_t wariancję opóźnienia grupowego, wtedy zasadę nieoznaczoności można wyrazić za pomocą następującej zależności:

$$ d_f d_t \geq \frac{1}{2} \tag{2.40} $$

Szczegółowe wyprowadzenie i dowód tej zależności można znaleźć w [8][39].

Fizycznym odpowiednikiem wariancji częstotliwości d_f jest pasmo sygnału, natomiast wariancja opóźnienia grupowego d_t nazywana jest czasem trwania (ang. time durations). Z zależności 2.40 wynika, że nie istnieje sygnał o dowolnie krótkim czasie trwania i jednocześnie o dowolnie wąskim pasmie. Zasadę nieoznaczoności można jednak odczytać inaczej. Jeżeli przyjmiemy, że d_t i d_f oznaczają rozdzielczość analizy sygnału odpowiednio w dziedzinie czasu i częstotliwości, wtedy z zależności 2.40 wynika, że łączna rozdzielczość analizy sygnału jest ograniczona [7][8][39].

2.3 Nieparametryczne JTFT

Do najbardziej znanych nieparametrycznych transformacji czasowo-częstotliwościowych należą:
- spektrogram wyznaczany przy pomocy STFT (ang. Short Time Fourier Transform):

\[
\hat{P}(n, f) = \left| \frac{1}{\sqrt{2\pi}} \sum_{l=0}^{L} x(l)w(l-n)e^{-j2\pi fl} \right|^2
\]

(2.41)

gdzie \(w(n) \) jest oknem czasowym o długości \(L \)

- i transformata Wignera-Ville’a:

\[
\hat{P}(n, f) = \frac{1}{\sqrt{2\pi}} \sum_{l=0}^{L} x^*(n)x(n+l)e^{-j2\pi fl}
\]

(2.42)

Transformacje te należą również do najczęściej stosowanych w rozwiązaniach praktycznych problemów. Obie transformacje są dobrze zbadane i opisane w literaturze [8][39][53]. Znanie są ich zalety i wady. Do zalet należą: prosta formula, stosunkowo niska złożoność obliczeniowa i możliwość stosowania algorytmu FFT.

Wadą spektrogramu jest konieczność doboru okna czasowego do danej klasy sygnałów. Wadę tę zmniejszają algorytmy zmieniające adaptacyjnie okno w zależności od zmian w sygnale, jednak odbywa się to kosztem wzrostu złożoności obliczeniowej. Ponadto spektrogram nie spełnia właściwości 2.29 i 2.30. łatwo można pokazać, że dla dowolnie wybranego okna istnieje przedział czasu, w którym sygnał ma wartość zerową, ale okno czasowe obejmuje wartości niezerowe. W tych przedziałach czasowych estymator \(\hat{P}(n, f) \) oczywiście nie będzie miał wartości zerowej. Analogiczna sytuacja zachodzi dla okien częstotliwościowych.

Transformacja Wignera-Ville’a teoretycznie jest transformacją o największej łącznej rozdzielczości w dziedzinie czasu i częstotliwości dla sygnałów o liniowej zmianie częstotliwości [55]. Jednak dla sygnałów o innej modulacji częstotliwości w transformacji pojawiają się artefakty. Artefakty, zwane czasami komponentami pozornymi, są produktami intermodulacji pomiędzy prawdziwymi komponentami składowymi. Np. załóżmy, że obserwowany sygnał jest sumą sygnałów \(x_1(n) \) i \(x_2(n) \):

\[
y(n) = x_1(n) + x_2(n)
\]

(2.43)

Transformatę Wignera-Ville’a takiego sygnału opisuje zależność [8]:

\[
\hat{P}_y(n, f) = \hat{P}_{11}(n, f) + \hat{P}_{22}(n, f) + 2Re\{\hat{P}_{12}(n, f)\}
\]

(2.44)
gdzie:

\[\hat{P}_{11}(n, f) = \frac{1}{\sqrt{2\pi}} \sum_{l=0}^{L} x_{1}^{*}(n)x_{1}(n + l)e^{-j2\pi fl} \]
(2.45)

analogicznie \(\hat{P}_{22}(n, f) \), natomiast:

\[\hat{P}_{12}(n, f) = \frac{1}{\sqrt{2\pi}} \sum_{l=0}^{L} x_{1}^{*}(n)x_{2}(n + l)e^{-j2\pi fl} \]
(2.46)

jest produktem intermodulacji.

W przypadku badania sygnałów modelowych można bez trudu odnaleźć artefakty, jednak gdy obserwujemy sygnał rzeczywisty, bardzo trudno jest odróżnić pożorne i prawdziwe komponenty. Dlatego wciąż proponowane są nowe JTFT. Większość z nich należy do klasy Cohen’a [8][39][55]. Cohen zaproponował następujące uogólnienie:

\[P(t, \omega) = \frac{1}{4\pi^{2}} \int \int \phi(\theta, \tau)x^{*}(u - \frac{\tau}{2})x(u + \frac{\tau}{2})e^{-j\theta u - j\omega \tau - j\omega \theta}dud\theta \]
(2.47)

gdzie \(\phi(\theta, \tau) \) oznacza jądro transformacji. Również spektrogram i transformacja Wigner-a-Ville’a należą do klasy Cohen’a. Ich jądra to odpowiednio:

\[\phi(\theta, \tau) = \int w^{*}(u - \frac{\tau}{2})w(u + \frac{\tau}{2})e^{-j\theta u}du \]
(2.48)

\[\phi(\theta, \tau) = 1 \]
(2.49)

Cohen wykazał, że dla danej klasy sygnałów można zaprojektować odpowiednie jądro minimalizujące artefakty.

2.4 Parametryczne JTFT

2.4.1 JTFT bazująca na modelu AR

Zadanie estymacji parametrycznych transformat JTFT to proces etapowy. Analogicznie jak w przypadku stacjonarnym, najpierw należy dobrać model i wyestymować zmienne w czasie parametry założonego modelu, a następnie wyznaczyć estymator JTFT. W przypadku parametrycznych transformat czasowo-częstotliwościowych odpowiednie zależności przyjmą postać:

\[\hat{P}_{ARMA}(n, f) = \sigma_{v}^{2} \frac{|B(n, f)|^{2}}{A(n, f)} \]
(2.50a)

\[\hat{P}_{MA}(n, f) = \sigma_{v}^{2} |\hat{B}(n, f)|^{2} \]
(2.50b)

\[\hat{P}_{AR}(n, f) = \frac{\sigma_{v}^{2}}{|A(n, f)|^{2}} \]
(2.50c)
Jak wynika z rozważań zawartych w rozdziale 2.1.2, założona klasa sygnałów implikuje model AR, tzn.:

$$x(n) = - \sum_{k=1}^{P} a_k(n)x(n - k)$$ (2.51)

gdzie $a_k(n)$ oznaczają zmienne w czasie współczynniki modelu AR, a P oznacza rząd modelu.

Większość algorytmów estymujących wartości stałych w czasie współczynników modelu AR po prostej modyfikacji, może służyć do estymacji zmiennych w czasie wartości. Modyfikacje te zakładają, że proces losowy w danym oknie czasowym można uznać za stacjonarny. Okno przesuwane jest w czasie o ustaloną ilość próbek i wyznaczane są kolejne estymatory parametrów modelu. Na podstawie tych parametrów wyznaczane są estymatory widma odpowiadające kolejnym przedziałom czasu. Tak uzyskana transformata nazywana jest czasem widmem ewolucyjnym.

Rozważano różne algorytmy wyznaczania parametrów modelu ARMA opisane w [16][22][26][31][32][47]. Najlepsze właściwości statystyczne wykazuje estymator największej wiarygodności MLE (ang. Maximum Likelihood Estimator), który przy dużym naborze próbek daje estymatory nieobciążone i wariancja tych estymatorów dąży do granicy Cramer’a-Rao. Inne metody jak np.: algorytm Levinson’a, czy algorytm Lee-Morfa’a są asymptotycznie zbieżne do wyników uzyskanych przez MLE [22][44].

Do wyznaczania zmiennych w czasie parametrów modelu AR najlepiej nadaje się algorytm Lee-Morfa, gdyż umożliwia on realizację potokową. Algorytm ten prognozuje wartość próbki sygnału w chwili N na podstawie przeszłości sygnału. Rozwiązanie problemu prognozy znajdowane jest przez ortogonalne rzutowanie prognozowanej próbki na podprzestrzeń rozpięto na przeszłości sygnału. Wykorzystanie rzutowania ortogonalnego zapewnia optymalność rozwiązania w sensie średniokwadratowym [25][54]. W procesie prognozy znajdowane są współczynniki odbicia, które można w łatwy sposób przekształcić na parametry modelu AR. Parametry te uaktualniane są z próbki na próbkę, dzięki czemu z próbki na próbkę można wyznaczyć uaktualnione widmo i w efekcie uzyskać transformację czasowo-częstotliwościową.

Algorytm Lee-Morfa, którego strukturę prezentuje rysunek 2.2, opisany jest szczegółowo w [25]. Algorytm ten nazywany jest również filtrem innowacyjnym. Na wejście filtru podawany jest unormowany sygnał:

$$y(n) = \frac{x(n)}{\sqrt{\hat{c}_{2,x}(n)}}$$ (2.52)

$$\hat{c}_{2,x}(n) = \lambda \hat{c}_{2,x}(n - 1) + x^2(n); \quad \hat{c}_{2,x}(0) = x^2(0) + \epsilon$$ (2.53)
gdzie $c_{2,r}(n)$ oznacza estymator wariancji sygnału w chwili n. Zastosowano tu pewien skrót myślowy, gdyż w rzeczywistości wyznaczamy zmienność w czasie estymator wariancji sygnału dla przesunięcia zerowego i należałoby użyć oznaczenia $c_{2,r}(n;0)$. Stała e to pewna mała wartość, dzięki której unikamy dzielenia przez zero w sytuacji gdy $c_{2,r}(n)$ jest równa zero (zależność 2.52). Natomiast $\lambda \in (0,1]$ jest tak zwanym współczynnikiem zapominania. Współczynnik ten jest rodzajem okna eksponencjalnego powodującego, że bliska przeszłość sygnału ma większy wpływ na parametry filtru niż daleka przeszłość. Dla $\lambda = 1$ cała przeszłość sygnału ma jednakowy wpływ na estymowane parametry filtru. Współczynniki odbicia $\hat{p}_k(n)$, zwane niekiedy współczynnikami Schur’a, w kolejnych sekcjach filtru wyznaczamy w sposób następujący:

$$\hat{p}_{k+1}(n) = \hat{p}_{k+1}(n-1)(1 - e_k^2(n))^{\frac{1}{2}}(1 - r_k^2(n-1))^{\frac{1}{2}} - e_k(n)r_k(n-1) \quad (2.54a)$$

$$e_{k+1}(n) = (1 - \hat{p}_{k+1}(n))^{-\frac{1}{2}}(1 - r_k^2(n-1))^{-\frac{1}{2}}(e_k(n) + \hat{p}_{k+1}(n)r_k(n-1)) \quad (2.54b)$$

$$r_{k+1}(n) = (1 - \hat{p}_{k+1}(n))^{-\frac{1}{2}}(1 - e_k^2(n))^{-\frac{1}{2}}(r_k(n-1) + \hat{p}_{k+1}(n)e_k(n)) \quad (2.54c)$$

Współczynniki odbicia i parametry modelu AR są wzajemnie jednoznaczne. Wynika to z algorytmu Levinson’a [22][54].

$$\hat{a}_i^{(k)}(n) = \hat{a}_i^{(k-1)}(n) + \hat{p}_k(n)\hat{a}_{k-i}^{(k-1)}(n) \quad i = 0, .., k; k = 1, .., P \quad (2.55)$$

przy inicjalizacji:

$$a_i^{(0)}(n) = \begin{cases} 1 & i = 0 \\ 0 & i = 1, .., P \end{cases} \quad (2.56)$$

W algorytmie Lee-Morfa, dla zmiennych w czasie parametrów modelu, kluczową rolę odgrywa współczynnik zapominania λ. Zaprezentowano to na rysunku 2.3. Sygnał modelowy zawiera dwa komponenty: jeden z liniową zmianą częstotliwości i drugi z nieliniową zmianą częstotliwości. Dla współczynnika zapominania $\lambda = 0.7$ wariancja estymatorów częstotliwości obu komponentów jest bardzo duża, ale algorytm szybko adaptuje się do zmian
Rysunek 2.3: Estymatory częstotliwości uzyskane za pomocą algorytmu Lee-Morfa dla różnych współczynników zapominania λ

w sygnale. Natomiast dla współczynnika $\lambda = 0.95$ wariancja estymatorów częstotliwości jest mała, jednak obciążenie tych estymatorów jest duże z powodu zbyt wolnej adaptacji algorytmu w stosunku do zmian w sygnale.

Dla losowych sygnałów niestacjonarnych model sygnału ulega zmianie w sposób przypadkowy. Mogą więc istnieć krótsze bądź dłuższe odcinki czasu w których sygnał można uznać za stacjonarny. Wtedy współczynnik λ powinien dążyć do jedności ze względu na malejącą z wzrostem λ wariancję estymacji parametrów modelu. Kiedy jednak w sygnale następują duże zmiany, współczynnik powinien maleć, tak aby otrzymane estymatory parametrów modelu AR bazowały na możliwie krótszej przeszłości sygnału. Rośnie wtedy wariancja estymacji parametrów modelu, ale skróceniu ulega czas adaptacji algorytmu. Modyfikacja algorytmu Lee-Morfa zaproponowana w rozdziale 3 umożliwia adaptacyjną zmianę współczynnika zapominania w zależności od zmian zachodzących w sygnale.

Składowe kryteria są [22][29][30]:

- kryterium FPE (ang. Final Prediction Error):
 \[FPE(n, k) = \frac{N + k}{N - k} \hat{d}_e(n) \] (2.57)

- kryterium AIC (ang. Akaike Information Criterion):
 \[AIC(n, k) = N \ln \hat{d}_e(n) + 2k \] (2.58)

- i kryterium CAT (ang. Criterion Autoregressive Transfer function):
 \[CAT(n, k) = \frac{1}{N} \sum_{i=1}^{k} \frac{1}{d_e(n)} - \frac{1}{\hat{d}_e(n)} \] (2.59a)
 \[\hat{d}_e(n) = \frac{N}{N - i} \hat{d}_e(n) \] (2.59b)

gде \(N \) oznacza ilość próbek użytych do estymacji parametrów modelu, \(n \) aktualny czas, \(k \) zakładany rząd modelu, a \(\hat{d}_e(n) \) oznacza estymator wariacji błędu \(e_k(n) \) po \(k \)-tej sekcji filtra (rysunek 2.2). Rząd modelu \(P(n) = k \), które dla aktualnej chwili czasu minimalizuje odpowiednie kryterium 2.57, 2.58 lub 2.59a. Jak pokazano w [22] dwa pierwsze kryteria, są równoważne, a zastosowanie ostatniego kryterium, mimo większej złożoności obliczeniowej, nie daje większej dokładności wyboru rzędu modelu.

2.4.2 JTFT bazująca na wielokomponentowym modelu sygnału

Alternatywnym podejściem do modelowania systemu AR jest bezpośrednie modelowanie parametrów sygnału, tzn. częstotliwości i mocy poszczególnych składowych sygnału wielokomponentowego (zależność 1.1). W tym celu rozważmy zastosowanie algorytmu ESPRIT. Wyprowadzenie algorytmu dla przypadku stacjonarnego przedstawiono w dodatku A.

Pierwszym krokiem tego algorytmu jest wyznaczanie estymatora autokorelacji. Jednym ze sposobów uogólnienia algorytmu ESPRIT na przypadek niestacjonarny jest rekursywnie wyznaczanie estymatora macierzy autokorelacji. Zależy, że dysponujemy wektorem próbek \(\mathbf{x} = [x(0), ..., x(T)]^T \) sygnału niestacjonarnego i wybieramy okno czasowe o długości \(N \) takie, że \(N \ll T \) i \(N > M \), gdzie \(M \) jest ilością komponentów zespolonych w sygnale.

\[\tilde{\mathbf{x}}(n) = [x(n), x(n+1), ..., x(n+N-1)]^T \] (2.60)
Rysunek 2.4: Estymatory częstotliwości uzyskane za pomocą zmiennej w czasie algorytmu ESPRIT

Zmienny w czasie estymator macierzy autokorelacji można zdefiniować następująco:

\[\hat{R}(n) = \mu \hat{R}(n - 1) + \frac{1}{N} \hat{x}(n)\hat{x}^H(n) \]
(2.61)

gdzie \(\hat{R}(n) \in \mathbb{C}^{N \times N} \), natomiast \(\mu \) jest współczynnikiem zapominania, analogicznie jak w algorytmie Lee-Morfa.

Pozostale kroki algorytmu ESPRIT pozostają bez zmian. Oznacza to, że kolejno wyznaczamy wartości i wektory własne macierzy \(\hat{R}(n) \), następnie z odpowiednich wektorów własnych tworzymy bazę ortonormalną \(\hat{B}(n) \in \mathbb{C}^{N \times M} \) i rozwiązujemy nadokreślony układ równań

\[\hat{B}'(n) = \hat{B}(n)Y(n) \]
(2.62)

Następnie wyznaczamy wartości własne macierzy \(Y(n) \in \mathbb{C}^{M \times M} \) i argumenty tych wartości własnych stanowią w istocie estymatory częstotliwości \(M \) komponentów składowych \([41][46]\), tzn.:

\[\hat{f}_m(n) = \frac{1}{2\pi} \text{arg}(\lambda_m(n)) \quad \text{dla} \quad m = 1, \ldots, M \]
(2.63)

gdzie \(\lambda_m \) są \(M \) największymi wartościami własnymi macierzy \(Y(n) \).
Na rysunku 2.4 zaprezentowano przykładowy wynik estymacji częstotliwości komponentów dla sumy dwóch sygnałów o liniowo i nieliniowo zmieniających się częstotliwościach. Kolorem fioletowym oznaczono faktyczne częstotliwości komponentów, a kolorem zielonym estymatory tych częstotliwości.

Metoda estymacji częstotliwości komponentów sygnału niestacjonarnego za pomocą algorytmu ESPRIT zachowuje bardzo dobre własności statystyczne algorytmu ESPRIT (por. rysunek 2.3 i 2.4), ma jednak zasadniczą wadę. Jest nią bardzo duża złożoność obliczeniowa. Dla każdej chwili czasu \(n \) należy wyznaczyć:

- rozkład macierzy rozmiaru \(N \times N \) względem wartości własnych
- rozkład macierzy rozmiaru \(N \times M \) względem wartości szczegółowych
- rozkład macierzy rozmiaru \(M \times M \) względem wartości własnych

W rozdziale 3 zaproponowano metodę wyznaczania macierzy \(\mathbf{B}(n) \) na podstawie macierzy \(\mathbf{B}(n-1) \) w chwili poprzedniej, co pozwala na redukcję kosztu obliczeniowego.

Zmienny w czasie algorytm ESPRIT zakłada znajomość rzędu modelu \(M \). Problem ten można stosunkowo prosto rozwiązać metodami podobnymi do stosowanych w przypadku modelu AR. Wykorzystuje się tu kolejne wartości własne macierzy autokorelacj \(\lambda_m \). W przypadku, gdy sygnał zawiera jedynie \(M \) zespolonych komponentów sinusoidalnych (bez szumu), wtedy tylko \(M \) pierwszych wartości własnych jest różnych od zera. W miarę wzrostu mocy szumu pozostałe wartości własne \(\lambda_m \) dla \(m > M \) rosną, jednak zawsze \(M \) pierwszych wartości własnych jest większych od pozostałych. Odpowiednie kryteria można zapisać następująco [46]:

- kryterium FPE (ang. Final Prediction Error):
 \[
 FPE(n, m) = \frac{N + m}{N - m} \lambda_m(n)
 \tag{2.64}
 \]

- kryterium AIC (ang. Akaike Information Criterion):
 \[
 AIC(n, m) = N \ln \lambda_m(n) + 2m
 \tag{2.65}
 \]

gdzie \(N \) oznacza rozmiar macierzy autokorelacji, \(n \) aktualny czas, \(m \) zakładany rząd modelu. Rząd modelu \(M(n) = m \) minimalizujące w aktualnej chwili czasu odpowiednie kryterium 2.64 lub 2.65. Powyższe kryteria pozwalają estymować rzząd modelu na bieżąco. Niestety w przypadku sygnałów z dużą zawartością szumu wyniki estymacji rzędu dalekie są od prawidłowych.
i często prowadzą do nadestymacji rzędu modelu. Wybranie rzędu modelu \(M \) większego niż faktyczny, nie dyskwalifikuje jednak algorytmu ESPRIT, ponieważ, jak wykazano w [1], moc komponentów pozornych, wynikających z nadestymacji rzędu modelu, jest istotnie mniejsza od mocy komponentów faktycznych. Z tego punktu widzenia, w większości zastosowań znacznie ważniejsza jest estymacja częstotliwości i mocy komponentów niż estymacja ich ilości.

2.4.3 Estymacja mocy komponentów

W przypadku modelu AR istnieje problem estymacji mocy komponentów. Jest to problem znany i opisany w literaturze [10][22]. Powodem trudności estymacji mocy komponentów jest dyskretyzacja częstotliwości. Zwykle, po wyznaczeniu zmiennych w czasie parametrów modelu AR, wyznacza się JTFT za pomocą transformaty Fouriera o zadanej rozdzielczości:

\[
\hat{P}_{AR}(n, f) = \frac{\sigma_v^2}{|A(n, f)|^2} = \frac{\sigma_v^2}{\text{FFT}\{\hat{a}(n)\}}
\]

(2.66)

Jednym ze sposobów na poprawę estymacji mocy komponentów jest dokładna estymacja częstotliwości komponentów, a następnie obliczenie zależności 2.66 dla wyznaczonych częstotliwości.

W algorytmie ESPRIT można wykorzystać jedną z jego własności pozwalającą na stosunkowo prostą estymację mocy komponentów [53]. Zalóżmy, że obserwowany sygnał składa się jedynie z \(M \) komponentów sinusoidalnych, wtedy zależność A.7 ze strony 88 można zapisać następująco:

\[
x = \sum_{m=1}^{M} A_m s_m
\]

(2.67)

lub w formie macierzyowej:

\[
x = SA
\]

(2.68)

gdzie\(x = [x(0), x(1), ..., x(N - 1)]^T \), wektor \(A = [A_1, A_2, ..., A_M]^T \) zawiera amplitudy kolejnych komponentów, a kolejne kolumny macierzy \(S \) są ortogonalną bazą wyznaczoną przez algorytm ESPRIT:

\[
S = \begin{bmatrix}
s_1 \\ s_2 \\ \vdots \\ s_M
\end{bmatrix}
\]

(2.69)

\[
s_m = \begin{bmatrix}
1 \\
\exp(2j\pi f_m) \\
\vdots \\
\exp(Nj\pi f_m)
\end{bmatrix}
\]
Dysponując bazą S można na podstawie zależności 2.68 zapisać:

$$A = S^{-1}x$$ \hspace{2cm} (2.70)

a ponieważ macierz S jest kolumnamiortonormalną $S^H S = I$, więc możemy zapisać:

$$A = S^H x$$ \hspace{2cm} (2.71)

Powyższy sposób estymacji amplitudy komponentów może być obarczony dużym błędem, jeżeli obserwowany sygnał, oprócz komponentów sinusoidalnych, zawiera również szum o dużej mocy.

2.5 Podsumowanie

Rozdział 3

Adaptacyjne wyznaczanie parametrycznych transformat czasowo-częstotliwościowych

3.1 Model AR ze zmiennym współczynnikiem zapominania - algorytm aAR

W rozdziale 2.4.1 zaprezentowano ideę wykorzystania zmiennych w czasie parametrów modelu AR do wyznaczania parametrycznej transformaty czasowo-
częstotliwościowej. Do wyznaczania zmiennych w czasie parametrów modelu
AR zaproponowano algorytm Lee-Morfa. Algorytm ten został wybrany ze
względu na swoje zalety takie jak stabilność numeryczną i możliwość orga-
nizacji obliczeń w strukturze potokowej. Pokazano również, że stały współczynnik zapominania λ ogranicza zakres stosowania tego algorytmu. W ni-
iejszym rozdziale zaprezentowana zostanie propozycja modyfikacji tego al-
gorytmu pozwalająca na zmianę współczynnika zapominania w trakcie pracy
algorytmu umożliwiając dopasowanie λ do szybkości zmian zachodzących w
sygnale.

Na rysunku 2.2 zaprezentowano strukturę filtru prognozuującego Lee-
Morfa. Rozwiązuje on problem liniowej optymalnej prognozy średniokwa-
dratowej [54]:

\[\hat{x}(n) = -(a_1(n)x(n-1) + \cdots + a_P(n)x(n-P)) = \\
= - \sum_{k=1}^{P} a_k(n)x(n - k) \quad (3.1) \]
Rysunek 3.1: Liniowa prognoza średniokwadratowa

Błąd prognozy wynosi:

\[e_P(n) = x(n) - \hat{x}(n) = x(n) + \sum_{k=1}^{P} a_k(n) x(n-k) \quad (3.2) \]

a w związku z powyższym, błąd średniokwadratowy zdefiniowano następująco:

\[c_{2,e} = \mathbb{E}\{e_P(n)e_P^*(n)\} \quad (3.3) \]

Należy zwrócić uwagę, że problem prognozy średniokwadratowej jest równoważny modelowaniu AR, a rząd prognozy \(P \) jest równoważny rzędowi modelu AR.

Rozwiązanie problemu prognozy znajdujemy jest przez minimalizację błędu średniokwadratowego \(c_{2,e} \). Teoretycznie w stanie ustalonym, dla sygnału wielokomponentowego stacjonarnego bez szumu, po dobieraniu właściwego rzędu modelu \(P = M \), (gǳie \(M \) oznacza ilość komponentów zespolonych w sygnale) błąd średniokwadratowy jest bliski zera i nie zależy od bieżącej chwili czasu \(n \). Jednak dla sygnałów niestacjonarnych wartość błędu średniokwadratowego będzie zależna od bieżącej chwili czasu \(n \). Ze względu na niestacjonarność sygnału wejściowego \(x(n) \), również sygnał wyjściowy filtra Lee-Morfa \(e_P(n) \) jest niestacjonarny, a więc niegrodyczny. Trudno jest więc mówić o wartości oczekiwanej sygnału \(e_P(n) \). Można jednak zdefiniować lokalny błąd średniokwadratowy w następujący sposób:

\[R_e(n) = \frac{1}{2K+1} \sum_{k=-K}^{K} e_P(n+k) e_P^*(n+k) \quad (3.4) \]

Założmy, że sygnał \(x(n) \) jest sygnałem wielokomponentowym i nie zawiera szumu:

\[x(n) = \sum_{m=1}^{M} e^{j(2\pi f_m(n))} \quad (3.5) \]

Za względem normalizacji sygnału \(x(n) \) w algorytmie Lee-Morfa, lokalny błąd średniokwadratowy wykazuje następujące własności:
Rysunek 3.2: Zależność błędu średniokwadratowego od zmian zachodzących w sygnale, oraz od wartości współczynnika zapominania \(\lambda \)

1. dla przedziałów lokalnej stacjonarności sygnału \(x(n) \):

\[
P \geq M \Rightarrow \lim_{n \to \infty} R_{e}(n) = 0
\]

(3.6)

2. dla pozostałych przedziałów:

\[
0 < R_{e}(n) \leq 1
\]

(3.7)

Tak więc w przedziałach lokalnej stacjonarności sygnału \(x(n) \) błąd średniokwadratowy maleje. Natomiast kiedy częstotliwości komponentów zmieniają się, błąd średniokwadratowy wzrasta, gdyż algorytm Lee-Mor'a, jak każdy algorytm adaptacyjny, wymaga czasu na adaptację parametrów filtru (w tym przypadku współczynników odbicia \(\rho_k(n) \)).

Na rysunkach 3.2.a i 3.2.b pokazano przykładowe przebiegi czasowe błędu średniokwadratowego \(R_{e}(n) \) wyznaczonego dla dwóch wartości współczynnika zapominania \(\lambda \). Wykres 3.2.a uzyskano dla sygnału jednokomponentowego, o częstotliwości:

\[
f_1(n) = \begin{cases}
0.4 & n \in [1, 100] \\
0.2 & n \in [101, 200]
\end{cases}
\]

(3.8)

Można więc w sygnale \(x(n) \) wyodrębnić dwa fragmenty lokalnie stacjonarne. Widać wyraźnie, że w przedziałach lokalnej stacjonarności błąd średniokwadratowy maleje do zera, a ponadto w momencie zmiany częstotliwości komponentu chwilowa wartość błędu średniokwadratowego wzrasta gwałtownie, po czym ze względu na adaptację algorytmu ponownie maleje do zera. Wykres 3.2.b uzyskano dla sygnałów o jednym komponencie zmieniającym częstotliwość liniowo od wartości \(f_1(1) = 0.4 \) do wartości \(f_1(200) = 0.2 \).
W tym przypadku chwilowa wartość błędu średniokwadratowego niemal w całym przedziale czasowym jest duża, ponieważ w sygnale \(x(n) \) nie można wyodrębnić fragmentów lokalnie stacjonarnych. Z obu rysunków wynika również, że prędkość adaptacji algorytmu w znacznym stopniu zależy od wartości współczynnika zapominania \(\lambda \). Im mniejszy jest ten współczynnik tym szybciej algorytm się adaptuje.

Powyższe własności błędu średniokwadratowego zostały wykorzystane w zaproponowanej prostej formule adaptacji:

\[
\lambda(n) = \mu \lambda(n-1) + (1 - \mu)(1 - \text{Re}(n))
\]

przy inicjalizacji:

\[
\lambda(0) = 1
\]

gdzie \(\mu \in (0, 1) \) odpowiada za prędkość zmian współczynnika zapominania \(\lambda(n) \). Powyższa formuła bazuje na gradientowych algorytmach adaptacyjnych opisanych w [18]. W tym wypadku jednak, jako funkcję kosztów wykorzystano lokalny błąd średniokwadratowy zdefiniowany zależnością 3.4.

Formuła adaptacji współczynnika zapominania spełnia następujące właściwości:

1. w przedziałach czasu, gdzie sygnał \(x(n) \) jest lokalnie stacjonarny:

\[
\lim_{n \to \infty} \text{Re}(n) = 0 \Rightarrow \lim_{n \to \infty} \lambda(n) = 1
\]

2. w przedziałach czasu, gdzie występuje braku lokalnej stacjonarności sygnału \(x(n) \):

\[
\lim_{n \to \infty} \text{Re}(n) \neq 0
\]

\[
\lim_{n \to \infty} \text{Re}(n) = \text{Re} \Rightarrow \lim_{n \to \infty} \lambda(n) = 1 - \text{Re}
\]

3. ponadto dla \(\mu = 1 \) otrzymujemy oryginalny algorytm Lee–Morf’a o stałym współczynniku zapominania:

\[
\mu = 1 \Rightarrow \lambda(n) = \lambda(n-1) = \text{const}
\]

Zaproponowana formuła adaptacji 3.9 wykorzystuje błąd średniokwadratowy zdefiniowany zależnością 3.4. Ze względu na niedostępność w chwili \(n \) sygnału \(e_P(n+k) \) dla \(k > 0 \), należy przyjąć \(K = 0 \). W efekcie:

\[
\text{Re}(n) = e_P(n+k)e^*_P(n+k)
\]
Rysunek 3.3: JTFT uzyskana za pomocą algorytmu aAR dla sygnałów: a) i c) o skokowej zmianie częstotliwości, b) i d) o liniowej zmianie częstotliwości; wykresy a) i b) uzyskano dla μ = 0.8, a wykresy c) i d) dla μ = 0.95

Rysunek 3.4: Przykładowa adaptacja współczynnika zapominania λ(n) dla sygnałów z rysunku 3.3
Podobne podejście stosowane jest w algorytmach adaptacyjnych wykorzystujących gradient stochastyczny. Nie wprowadza to dodatkowych znaczących błędów do algorytmu [18].

W dalszej części niniejszej pracy proponowany algorytm wyznaczania parametrów modelu AR za pomocą zmodyfikowanego algorytmu Lee-Morť'a będzie nazywany krótko algorytmem aAR. Transformaty czasowo-częstotliwościowe przykładowych sygnałów niestacjonarnych zaprezentowano na rysunku 3.3. Natomiast na rysunku 3.4 zaprezentowano przykładowe przebiegi adaptacji współczynnika zapominania λ(\(n\)) dla tych sygnałów. Dla sygnału o skokowej zmianie częstotliwości (rysunek 3.4.a) można zaobserwować wyraźną skokową zmianę współczynnika \(\lambda(n)\), która następuje w tym samym momencie, gdy w sygnale \(x(n)\) dochodzi do zmiany częstotliwości komponentu. Dla sygnału o liniowej zmianie częstotliwości (rysunek 3.4.b) współczynnik \(\lambda(n)\) nie dąży do wartości bliskich jedności gdyż w sygnale tym nie występują przedziały lokalnej stacjonarności sygnału \(x(n)\).

3.2 Adaptacyjny model ESPRIT - algorytm aESPRIT

Podrozdział 2.4.2 pokazuje sposób wykorzystania algorytmu ESPRIT do wyznaczania JTFT. Jak już wspomniano, metoda ta ma zwięzły zapis matematyczny i odnosi się bardzo dobrzy właściwościami statystycznymi uzyskanych estymatorów. Jest jednak bardzo kosztowna obliczeniowo. Przypomnijmy, że na ten koszt składają się głównie trzy elementy (patrz Dodatek A, strona 91):

- rozkład macierzy autocorelacji \(\hat{R}(n)\) o rozmiarze \(N \times N\) względem wartości własnych - koszt \(\sim \frac{4}{3}N^3\)

- rozwiązanie rozwiązania nadokreślonego układu równań (np. przez rozkład odpowiedniej macierzy o rozmiarze \(N \times M\) względem wartości szczególnych) - koszt \(\sim (N - \frac{M}{3})N^2\)

- rozkład macierzy \(Y(n)\) (wynik rozwiązania powyższego układu równań) o rozmiarze \(M \times M\) względem wartości własnych - koszt \(\sim \frac{4}{3}M^3\)

dla każdej chwili czasu \(n\). Najkosztowniejszą operacją jest rozkład macierzy autocorelacji \(\hat{R}(n)\) względem wartości własnych. Dla każdej chwili czasu \(n\) należy wyznaczyć \(N\) wektorów i \(N\) wartości własnych. Jeżeli znany jest rzad modelu \(M\) to możemy ograniczyć się do wyznaczania \(M\) dominujących wartości własnych i \(M\) przenikalnych wektorów własnych rozwijających pod-przestrzeń sygnału. Jeżeli jednak uwzględniemy, że programy naukowe (np.
Matlab 5.x) wyznaczają pełen rozkład, a ilość pracy nad implementacją wła-
snej funkcji wyznaczającej tylko M dominujących par własnych jest ogrom-
na, to okazuje się, że należy poszukiwać innych metod zmniejszenia kosztów
obliczeniowych tego rozkładu.

W dodatku B przytoczono ogólne zasady rozkładu macierzy względem
par własnych. Opisano też jeden z algorytmów wyznaczania tych par za po-
mocą iteracji na podprzestrzeniach. Algorytm ten, po kilku modyfikacjach
doskonale nadaje się do adaptacyjnego wyznaczania M dominujących par
własnych. Należy zauważyć, że wyznaczając dominujące pary własne macie-
ry, równocześnie wyznaczamy dominującą podprzestrzeń, czyli przestrzeń
sygnału, rozpinaną przez wektory własne przynależne do dominujących war-
tości własnych.

Przypomnijmy, że dysponujemy wektorem próbek $x = [x(0), \ldots, x(T)]^T$
sygnału niestacjonarnego o wartościach zespolonych i wybieramy okno czaso-
we o długości N takie, że $N \ll T$ i $N > M$, gdzie M jest ilością komponentów
zespolonych w sygnale:

$$x(n) = [x(n - N/2), \ldots, x(0), \ldots, x(n + N/2 - 1)]^T$$ (3.16)

Przypomnijmy również, że estymator zmiennej w czasie macierz autokore-
lacji $\hat{R}(n)$ zdefiniowany jest następująco:

$$\hat{R}(n) = \mu \hat{R}(n-1) + \frac{1}{N} x(n) x^H(n)$$ (3.17)

$$\hat{R}(-1) = 0$$ (3.18)

gdzie $\hat{R}(n) \in \mathbb{C}^{N \times N}$, natomiast μ jest współczynnikiem zapominania, analo-
gicznie jak w algorytmie Lee-Mor’a współczynnik λ. Taka definicja gwaran-
tuje, że dla każdej chwili czasu n zmieniu w czasie macierz autokorelacji jest
macierzą hermitowską:

$$\forall_{n \in [0, T]} \quad \hat{R}(n) = \hat{R}^H(n)$$ (3.19)

Ponadto macierz $\hat{R}(n)$ w każdej chwili czasu jest macierzą dodatnio półokre-
śloną, gdyż zbudowana na niej forma kwadratowa jest zawsze dodatnia:

$$y^H \hat{R}(n)y = y^H [\mu \hat{R}(n-1)] y + \frac{1}{N} \underbrace{y^H x(n)}_{v'(n)} \underbrace{x^H(n) y}_{v(n)} =$$

$$= \mu y^H \hat{R}(n-1) y + \frac{1}{N} ||v(n)||^2 \geq 0$$ (3.20)
Ogólnie wiadomo, że wartości własne takiej macierzy są nieujemnymi liczbami rzeczywistymi, natomiast stworzono z nimi wektory własne są ortogonalne \([17][21][24]\). Tak więc w przestrzeni liczb zespolonych, prawdziwe są wszystkie wyprowadzania zawarte w dodatku B, z tą różnicą, że wektory własne rozwiązanej macierzy przyjmują wartości zespolone.

Jednak wykazano w dodatku B, iteracja na podprzestrzeniach pozwala na wyznaczenie dominujących par własnych macierzy. Oznaczmy przez \(\lambda_n\) wartości własne macierzy autokorelacji \(\tilde{R}(n)\) i załóżmy, że są one uporządkowane malejąco:

\[
\lambda_1(n) > \lambda_2(n) > \ldots > \lambda_N(n) \geq 0
\]

(3.21)

Ponieważ do różnych wartości własnych przynależą wzajemnieortonormalne wektory własne, stąd rozkład macierzy \(\tilde{R}(n)\) względem wartości własnych można zapisać następująco:

\[
\tilde{R}(n) = \tilde{U}(n)\tilde{\Lambda}(n)\tilde{U}^H(n) =
\]

\[
= \sum_{m=1}^{M} \tilde{u}_m(n)\lambda_m(n)\tilde{u}^H_m(n) + \sum_{m=M+1}^{N} \tilde{u}_m(n)\lambda_m(n)\tilde{u}^H_m(n)
\]

(3.22)

gdzie \(\tilde{\Lambda}(n) \in \mathbb{R}^{N \times N}\) jest macierzą diagonalną zawierającą wartości własne macierzy autokorelacji, a \(\tilde{U}(n) \in \mathbb{C}^{N \times N}\) jest macierzą unitarną \([17][21][24]\):

\[
\tilde{U}^H(n)\tilde{U}(n) = \tilde{U}(n)\tilde{U}^H(n) = I
\]

(3.23)

Należy zauważyć, że dominująca podprzestrzeń własna rozpięta na wektorach \(\tilde{u}_m(n)\) dla \(m = 1, \ldots, M\) jest podprzestrzenią sygnału wielokomponentowego. Przyjmując analogiczny do algorytmu ESPRIT zapis możemy dominujące wektory własne oznaczyć następująco \(\tilde{u}_m(n) \in \mathbb{C}^N\). Natomiast przez \(\tilde{B}(n) \in \mathbb{C}^{N \times M}\) oznaczmyortonormalną bazę podprzestrzeni sygnału:

\[
\tilde{B}(n) = \begin{bmatrix}
| & | & \vdots & | \\
\tilde{u}_1(n) & \tilde{u}_2(n) & \cdots & \tilde{u}_M(n) \\
| & | & \vdots & |
\end{bmatrix}
\]

(3.24)

Z własności transformaty Karhunen’-a-Loeve’go wynika fakt, że ograniczona do \(M\) wektorów aproksymacja postaci (3.22) jest optymalna w sensie średniokwadratowym \([53]\):

\[
\tilde{R}(n) \cong \tilde{B}(n)\tilde{\Lambda}(n)\tilde{B}^H(n) = \sum_{m=1}^{M} \tilde{u}_m(n)\lambda_m(n)\tilde{u}^H_m(n)
\]

(3.25)
gdzie \(\Lambda(n) \in \mathbb{R}^{M \times M} \) jest macierzą diagonalną zawierającą \(M \) największych wartości własnych macierzy autokorelacji (\(M \) jest liczbą komponentów sinusoidalnych). Z tego punktu widzenia interesujące jest wyznaczenie jedynie bazy podprzestrzeni sygnału \(B(n) \) w każdej chwili \(n \).

Oznaczmy przez \(\delta \hat{R}(n) \) różnicę pomiędzy estymatorami macierzy autokorelacji w kolejnych chwilach czasu i załóżmy, że jest ona wystarczająco mała:

\[
\delta \hat{R}(n) = \hat{R}(n) - \hat{R}(n-1)
\]
(3.26)

gdzie macierz \(\delta \hat{R}(n) \in \mathbb{C}^{N \times N} \) nazywana jest zaburzeniem macierzy autokorelacji. Należy zauważyć, że ze względu na sposób wyznaczania estymatora macierzy autokorelacji (definicja 3.17) w kolejnych chwilach czasu zostaje zachowana hermitowskość tej macierzy. Z definicji tej wynika również, że zaburzenie \(\delta \hat{R}(n) \) jest macierzą hermitowską.

Załóżmy, że znany rozkład macierzy autokorelacji względem wartości własnych (zależność 3.22). Zbadajmy wpływ wielkości zaburzenia \(\delta \hat{R}(n) \) na wartości własne macierzy zaburzonej. W tym celu rozważmy dowolną parę własną \(\{\lambda_i(n), \bar{u}_i(n)\} \) macierzy \(\hat{R}(n) \):

\[
\hat{R}(n)\bar{u}_i(n) = \bar{u}_i(n)\lambda_i(n) = [\hat{R}(n-1) + \delta \hat{R}(n)]\bar{u}_i(n)
\]
(3.27)

Wektor \(\bar{u}_i(n) \) możemy wyrazić w bazie wektorów własnych macierzy \(\hat{R}(n-1) \) następująco:

\[
\bar{u}_i(n) = \bar{U}(n-1)z(n-1) = \sum_{j=1}^{N} \bar{u}_j(n-1)z_j(n-1)
\]
(3.28)

gdzie:

\[
z_j(n-1) = \bar{u}_j^H(n-1)\bar{u}_i(n) \quad \|z(n-1)\| = 1
\]
(3.29)

Po podstawieniu (3.28) do (3.27) otrzymujemy zależność:

\[
[\hat{R}(n-1) + \delta \hat{R}(n)]\bar{U}(n-1)z(n-1) = \bar{U}(n-1)z(n-1)\lambda_i(n)
\]
(3.30)

Dalej, przekształcając otrzymujemy:

\[
\bar{U}^H(n-1)[\hat{R}(n-1) + \delta \hat{R}(n)]\bar{U}(n-1)z(n-1) +
\]
\[
+ \bar{U}^H(n-1)\delta \hat{R}(n)\bar{U}(n-1)z(n-1) = z(n-1)\lambda_i(n)
\]
(3.31)
\[
\hat{\mathbf{U}}^H(n-1)\delta \hat{\mathbf{R}}(n) \hat{\mathbf{U}}(n-1) \mathbf{z}(n-1) = \\
= [\lambda_i(n) \mathbf{I} - \hat{\mathbf{U}}^H(n-1)\hat{\mathbf{R}}(n-1)\hat{\mathbf{U}}(n-1)] \mathbf{z}(n-1) \quad (3.33)
\]

\[
[\lambda_i(n) \mathbf{I} - \mathbf{A}(n-1)] \mathbf{z}(n-1) = \mathbf{y}(n-1) = \\
= \hat{\mathbf{U}}^H(n-1)\delta \hat{\mathbf{R}}(n) \underbrace{\hat{\mathbf{U}}(n-1) \mathbf{z}(n-1)}_{\mathbf{a}_i(n)} \quad (3.34)
\]

Korzystając z zależności (3.28) można zauważyć, że wektor \(\mathbf{y}(n-1)\) ma składowe:

\[
y_j(n-1) = [\lambda_i(n) - \lambda_j(n-1)] z_j(n-1) = \hat{\mathbf{u}}_j^H(n-1)\delta \hat{\mathbf{R}}(n) \mathbf{u}_i(n) \quad (3.35)
\]

Rozważmy teraz normę wektora \(\mathbf{y}(n-1)\). Z jednej strony otrzymujemy:

\[
\|\mathbf{y}(n-1)\| \leq \|\delta \hat{\mathbf{R}}(n)\| \|\mathbf{z}(n-1)\| = \|\delta \hat{\mathbf{R}}(n)\| \quad (3.36)
\]

Z drugiej zaś:

\[
\|\mathbf{y}(n-1)\|^2 = \sum_{j=1}^{N} [\lambda_i(n) - \lambda_j(n-1)]^2 z_j^2(n-1)
\]

\[
\geq \min_{j=1,...,N} \{|\lambda_i(n) - \lambda_j(n-1)|^2 \} \sum_{j=1}^{N} z_j^2(n-1) = \\
= \min_{j=1,...,N} \{|\lambda_i(n) - \lambda_j(n-1)|^2 \} \quad (3.37)
\]

Z zależności (3.36) i (3.37) wynika następujące oszacowanie:

\[
\min_{j=1,...,N} |\lambda_i(n) - \lambda_j(n-1)| \leq \|\delta \hat{\mathbf{R}}(n)\| \quad (3.38)
\]

Identyczne rozumowanie można przeprowadzić dla wszystkich par własnych macierzy \(\delta \hat{\mathbf{R}}(n)\), a przy dodatkowym założeniu, że wartości własne macierzy \(\hat{\mathbf{R}}(n-1)\) i \(\hat{\mathbf{R}}(n)\) są uporządkowane malejąco, tzn.:

\[
\lambda_1(n-1) > \lambda_2(n-1) > \ldots > \lambda_N(n-1) \geq 0 \quad (3.39)
\]

\[
\lambda_1(n) > \lambda_2(n) > \ldots > \lambda_N(n) \geq 0 \quad (3.40)
\]

otrzymujemy oszacowanie silniejsze:

\[
\forall_{i=1,...,N} \quad |\lambda_i(n) - \lambda_i(n-1)| \leq \|\delta \hat{\mathbf{R}}(n)\| \quad (3.41)
\]

37
Powyższe oszacowanie oznacza, że wartości własne macierzy autokorelacji wyznaczone w chwili \(n-1\) dobrze przybliżają wartości własne macierzy autokorelacji w chwili \(n\), jeżeli tylko zaburzenie jest odpowiednio małe. Uwzględniając definicję macierzy autokorelacji \(\hat{\mathbf{R}}(n)\) (definicja 3.17) oczywisty jest fakt, że zawsze można tak dobrać współczynnik zapominania \(\mu\) aby zaburzenie \(\delta \hat{\mathbf{R}}(n)\) było odpowiednio małe.

Obecnie zbadamy wpływ zaburzenia \(\delta \hat{\mathbf{R}}(n)\) na wektory własne macierzy zaburzonej. Istotą sprawy jest odpowiedź na pytanie: jak bardzo kierunki wektorów \(\tilde{\mathbf{u}}_i(n)\) różnią się od kierunków wektorów w chwili poprzedniej \(\tilde{\mathbf{u}}_j(n-1)\). Rozważmy iloczyn skalarny pomiędzy wektorami \(\tilde{\mathbf{u}}_j(n-1)\) i \(\tilde{\mathbf{u}}_i(n)\). W przypadku idealnym:

\[
\forall_{i\neq j} \quad \tilde{\mathbf{u}}_j(n-1) \perp \tilde{\mathbf{u}}_i(n) \Rightarrow |\tilde{\mathbf{u}}_j^H(n-1)\tilde{\mathbf{u}}_i(n)| = |z_j(n-1)| = 0
\]

(3.42)

wektory bazowe dla \(i \neq j\) są prostopadłe. Należy zauważyć, że iloczyn skalarny \(|\tilde{\mathbf{u}}_j^H(n-1)\tilde{\mathbf{u}}_i(n)|\) można traktować jako uogólniony cosinus kąta pomiędzy wektorami w przestrzeni liczb zespolonych.

Na podstawie zależności (3.34) można zauważyć, że:

\[
\forall j \in \{1,\ldots,N\} \quad \left(\lambda_i(n) - \lambda_j(n-1)\right)z_j(n-1) = \tilde{\mathbf{u}}_j^H(n-1)\delta \hat{\mathbf{R}}(n)\tilde{\mathbf{u}}_i(n) = \tilde{\mathbf{u}}_j^H(n-1)\delta \hat{\mathbf{R}}(n)\tilde{\mathbf{u}}_i(n) = 0
\]

(3.43)

Wybierzmy teraz dowolny wskaźnik \(j\) taki, że \(z_j(n-1) \neq 0\), czyli niech wektor \(\tilde{\mathbf{u}}_j(n-1)\) nie będzie prostopadły do wektora \(\tilde{\mathbf{u}}_i(n)\), wtedy:

\[
|z_j(n-1)| = \frac{|\tilde{\mathbf{u}}_j^H(n-1)\delta \hat{\mathbf{R}}(n)\tilde{\mathbf{u}}_i(n)|}{|\lambda_i(n) - \lambda_j(n-1)|}
\]

(3.44)

\[
|\tilde{\mathbf{u}}_j^H(n-1)\delta \hat{\mathbf{R}}(n)\tilde{\mathbf{u}}_i(n)| \leq ||\tilde{\mathbf{u}}_j(n-1)|| ||\delta \hat{\mathbf{R}}(n)|| ||\tilde{\mathbf{u}}_i(n)||
\]

(3.45)

Ponieważ \(||\tilde{\mathbf{u}}_j(n-1)|| = 1\) i \(||\tilde{\mathbf{u}}_i(n)|| = 1\) stąd:

\[
|\tilde{\mathbf{u}}_j^H(n-1)\tilde{\mathbf{u}}_i(n)| = |z_j(n-1)| \leq \frac{||\delta \hat{\mathbf{R}}(n)||}{|\lambda_i(n) - \lambda_j(n-1)|}
\]

(3.46)

Ponadto w sytuacji idealnej odpowiadające sobie wektory bazowe \(\tilde{\mathbf{u}}_i(n-1)\)

i \(\tilde{\mathbf{u}}_i(n)\) są równoległe. Dobrą miarą równoległości jest sinus kąta pomiędzy odpowiednimi wektorami. Korzystając z własności, że \(\sin^2 \alpha + \cos^2 \alpha = 1\), a także z faktu, że iloczyn skalarny wektorów można traktować jako cosinus
kąta pomiędzy tymi wektorami możemy napisać:

\[
\forall i \in \{1, \ldots, N\} \quad \bar{u}_i(n-1) \parallel \bar{u}_i(n) \Rightarrow \\
1 - |\bar{u}_i^H(n-1)\bar{u}_i(n)|^2 = 1 - |z_i(n-1)|^2 = \\
= \sum_{\forall j \neq i} |z_j(n-1)|^2 = 0 \quad (3.47)
\]

Korzystając z zależności (3.35):

\[
\sum_{\forall j \neq i} |z_j(n-1)|^2 = \sum_{\forall j \neq i} \frac{|y_j(n-1)|^2}{|\lambda_i(n) - \lambda_j(n-1)|^2} \quad (3.48)
\]

Wprowadzając oznaczenie:

\[
\gamma_i(n) = \min_{j \neq i} |\lambda_i(n) - \lambda_j(n-1)| > 0 \quad (3.49)
\]

i korzystając z zależności (3.36) możemy napisać, że:

\[
\sum_{\forall j \neq i} |z_j(n-1)|^2 \leq \frac{\|y(n-1)\|^2}{\gamma_i^2(n)} \leq \frac{\|\delta R(n)\|^2}{\gamma_i^2(n)} \quad (3.50)
\]

Ostatecznie otrzymujemy nierówność:

\[
\forall i \in \{1, \ldots, N\} \quad 1 - |\bar{u}_i^H(n-1)\bar{u}_i(n)|^2 \leq \frac{\|\delta R(n)\|}{\gamma_i(n)} \quad (3.51)
\]

Podsumowując, zbadano wpływ wielkości zaburzenia macierzy autokorelacji \(\delta R(n)\) na wartości i wektory własne macierzy zaburzonej. W wyniku otrzymano trzy użyteczne oszacowania:

\[
\forall i=1, \ldots, N \quad |\lambda_i(n) - \lambda_i(n-1)| \leq \|\delta R(n)\| \quad (3.52)
\]

\[
|\bar{u}_i^H(n-1)\bar{u}_i(n)| = |z_i(n-1)| \leq \frac{\|\delta R(n)\|}{|\lambda_i(n) - \lambda_j(n-1)|} \quad (3.53)
\]

\[
\forall i \in \{1, \ldots, N\} \quad 1 - |\bar{u}_i^H(n-1)\bar{u}_i(n)|^2 \leq \frac{\|\delta R(n)\|}{\gamma_i(n)} \quad (3.54)
\]

Zakładając, że zaburzenie \(\delta R(n)\) jest odpowiednio małe, szacowania te można sformułować w postaci następujących wniosków:

- Wartości własne \(\lambda_i(n-1)\) są dobrym przybliżeniem wartości własnych \(\lambda_i(n)\).
• Ponieważ prawa strona nierówności (3.53) jest bliska zeru, skąd wniosek, że wektory \(\mathbf{u}_j(n-1) \) i \(\mathbf{u}_i(n) \) dla różnych \(i, j \) są do siebie prawnie prostopadle. Mogą więc służyć do stworzenia bazyortonormalnej sygnału w chwili \(n \).

• Przy dodatkowym założeniu, że \(\gamma_i(n) \) jest odpowiednio duże, prawa strona nierówności (3.54) jest bliska zeru. Stąd wniosek, że wektory własne \(\mathbf{u}_i(n-1) \) i \(\mathbf{u}_i(n) \) są względem siebie prawie równoległe. Warunki dostatecznie dużego \(\gamma_i(n) \) jest równoważny wymaganiu, aby wartości własne \(\lambda_i(n) \) oraz \(\lambda_j(n-1) \) dla \(i \neq j \) były dostatecznie od siebie oddalone.

Oszacowania (3.52), (3.53) i (3.54) nie są konieczne w algorytmie iteracji na podprzestrzeniach (zależność B.9, dołotek B), gdyż w algorytmie tym iterowana macierz jest stała. Natomiast w przypadku zmiennej w czasie macierzy autokorelacji sygnału niestacjonarnego musimy założyć, że zaburzenie \(\delta \mathbf{R}(n) \) w kolejnych chwilach czasu jest odpowiednio małe. Wtedy prawdopodobnie są powyższe oszacowania i macierze wektorów własnych \(\mathbf{B}(n) \) rozwijającego podprzestrzeń sygnału w chwili \(n \) może być wyznaczana z rekursywnej zależności:

\[
\mathbf{B}(n) = \mathbf{R}(n)\mathbf{B}(n-1)
\]

gdzie \(\mathbf{B}(n-1) \) jest bazą podprzestrzeni sygnału w chwili poprzedniej, a \(\mathbf{R}(n) \) jest macierzą autokorelacji w chwili bieżącej wyznaczoną z zależności (3.17). Od macierzy \(\mathbf{B}(0) \) oczekuje się jedyneortonormalności. Najłatwiej jest więc przyjąć, że \(\mathbf{B}(0) \) jest prostokątną macierzą jednostkową wymiaru \(M \times N \).

Ponieważ macierz \(\mathbf{B}(n) \) rozwija podprzestrzeń sygnału, to powinna być kolumnamiortonormalna (najlepiejortonormalna). Zatem dość, że kolumny macierzy \(\mathbf{B}(n-1) \) tworzą bazęortonormalną. Kolumny macierzy \(\mathbf{B}(n) = \mathbf{R}(n)\mathbf{B}(n-1) \) na ogół nie tworzą już bazyortonormalnej. Konieczna jest więc reortonormalizacja bazy \(\mathbf{B}(n) \). W celu reortonormalizacji bazy można zastosować dowolny algorytmortonormalizacji. Z tego względu na największą dokładnośćortonormalizacji wybrano algorytm QR [24].

Rozkład QR dla każdej chwili \(n \) można zapisać następująco:

\[
\mathbf{QR}_n = \mathbf{B}(n)
\]

gdzie \(\mathbf{Q} \) jest macierzą kolumnamiortonormalną, a \(\mathbf{R}_n \) jest macierzą nieosobliwątrójkątną górną [17][21][24]. Następnie zamiast macierzy \(\mathbf{B}(n) \) wykorzystuje się macierz \(\mathbf{Q} \):

\[
\mathbf{B}(n) = \mathbf{Q}
\]

Powyższe rozważania pozwalają sformułować zmodyfikowany adaptacyjnyalgorytm aESPRIT (wyprowadzenie oryginalnego algorytmu ESPRIT
przytoczono w dodatku A. Algorytm aESPRIT wyznacza parametry niesta-
cjonarnego sygnału w oparciu o wielokomponentowy model sygnału opisany
zależnością 1.1

1. Estymacja macierzy autokorelacji \(\hat{R}(n) \) na podstawie wektora próbek
\(\tilde{x}(n) = [x(n), x(n+1), ..., x(n+N-1)]^T \):

\[
\hat{R}(n) = \lambda \hat{R}(n-1) + \frac{1}{N} \tilde{x}(n)\tilde{x}^T(n)
\]
(3.58)

gде \(\hat{R}(-1) = 0 \)

2. Utworzenie bazyortonormalnej \(B(n) \):

\[
\hat{A}(n) = \hat{R}(n)B(n-1)
\]
(3.59)

\[
\hat{A}(n) = QR_t
\]
(3.60)

\[
B(n) = Q
\]
(3.61)

3. Rozwiązanie nadokreślonego układu równań względem \(Y(n) \) w sensie
LS lub TLS:

\[
B'(n) = B(n)Y(n)
\]
(3.62)

gdzie macierze \(B'(n) \) i \(B(n) \) powstają przez wykreślenie odpowiednio
pierwszego i ostatniego wiersza macierzy \(B(n) \):

\[
B(n) = \begin{bmatrix}
\cdots & \cdots & \cdots \\
B'(n) & \cdots & \cdots
\end{bmatrix}
\]
(3.63)

4. Znalezienie wartości własnych macierzy \(Y(n) \):

\[
U^H(n)Y(n)U(n) = \Lambda(n)
\]
(3.64)

gdzie \(\Lambda(n) = \text{diag}\{\lambda_1(n), \ldots, \lambda_M(n)\} \) są wielkościami zespolonymi

5. Argumenty zespolonych wartości własnych są szukanymi częstotliwościami \(f_m(n) \):

\[
\lambda_m(n) = I(n)e^{j(2\pi f_m(n))}
\]
(3.65)

Można zauważyć, że algorytm aESPRIT różni się od algorytmu opisanego
w podrozdziale 2.4.2 krokiem drugim, w którym wyznaczana jest orto-
normalna baza podprzestrzeni sygnału \(B(n) \in \mathbb{C}^{N \times M} \). Kosztowy rozkład
macierzy autokorelacji \(R(n) \in \mathbb{C}^{N \times N} \) względem wartości własnych, został
zastąpiony mnożeniem macierzy i reortonormalizacją bazy. Jak wspomniano, koszt wyznaczenia \(N \) wektorów własnych macierzy o rozmiarze \(N \times N \) wynosi \(\frac{2}{3}N^3 \) [24][37]. Uwzględnione tu zostały tylko operacje mnożenia jako najkosztowniejsze obliczeniowo, przy założeniu, że koszt pojedynczego mnożenia wynosi jeden, niezależnie od tego czy mnożenie odbywa się w arytmetyce rzeczywistej czy w zespolonej. Koszt obliczeniowy tego samego kroku, przy takich samych założeniach, w proponowanym algorytmie wynosi \(N^2M + NM^2 \) [24]. Pierwszy składnik wynika z mnożenia macierzy o rozmiarach \(N \times N \) i \(N \times M \), a drugi wynika z konieczności wykonania rozkładu QR macierzy o rozmiarze \(N \times M \). Zwykle przyjmuje się, że \(N \geq 2M \). Przyjmując więc \(N = 2M \) możemy porównać koszt obliczeniowy wyznaczeniaortonormalnej bazy \(\mathbf{B}(n) \).

- Dla algorytmu ESPRIT (dodatek A, krok 2a):
 \[
 Koszt = \frac{4}{3}N^3 = \frac{4}{3}8M \cong 11M^3 \quad (3.66)
 \]

- Dla algorytmu aESPRIT:
 \[
 Koszt = N^2M + NM^2 = 4M^3 + 2M^3 = 6M^3 \quad (3.67)
 \]

Można więc liczyć, że proponowany algorytm aESPRIT jest niemal dwukrotnie szybszy od oryginalnego algorytmu ESPRIT. W rzeczywistości jednak po uwzględnieniu specyfiki arytmetyki zespolonej, oraz po uwzględnieniu kosztu innych operacji (np. dodawania), algorytm aESPRIT jest szybszy tylko około 30% od oryginalnego algorytmu ESPRIT.

Na rysunku 3.5 zaprezentowano estymatory częstotliwości uzyskane za pomocą algorytmu aESPRIT, dla sygnału identycznego jak na rysunku 2.4 (str. 24). Fioletowym kolorem zaznaczono faktyczne częstotliwości komponentów, natomiast kolorem zielonym zaznaczono estymatory częstotliwości komponentów uzyskane algorytmem aESPRIT. Porównując rysunki 2.4 i 3.5 można zauważyć, że estymatory uzyskane oryginalnym algorytmem ESPRIT i proponowanym algorytmem aESPRIT niemal nie różnią się od siebie. Dokładną analizę jakościową zaprezentowano w podrozdziale 4.4.

3.3 Podsumowanie

W rozdziale tym zaproponowano dwa adaptacyjne algorytmy estymacji częstotliwości składowych sygnału wielokomponentowego. Pierwszy z proponowanych algorytmów jest modyfikacją algorytmu Lee-Morfa. Modyfikacja ta
Rysunek 3.5: Estymatory częstotliwości uzyskane za pomocą algorytmu aESPRIT

polega na wprowadzeniu zmiennego w czasie współczynnika zapominania λ(n). Jego wartość zmieniana jest adaptacyjnie w zależności od prędkości zmian zachodzących w sygnale. Drugi z proponowanych algorytmów jest modyfikacją zmiennego w czasie algorytmu ESPRIT. Modyfikacja polega na zastąpieniu kosztownego obliczeniowo rozkładu macierzy autokorelacji sygnału, wykonywanego dla każdej chwili czasu n, zwykłym mnożeniem macierzy. Zarówno w algorytmie ESPRIT jak i proponowanym algorytmie aESPRIT wyznaczana jestortonormalna baza podprzestrzeni sygnału, co w dalszej kolejności pozwala wyznaczyć częstotliwości składowe sygnału.

W rozdziale zawarto wykresy przykładowych symulacji, na których pokazano efekty zastosowanych modyfikacji. Szczegółowe badania symulacyjne zawarte są w rozdziale następnym.
Rozdział 4
Badania symulacyjne

Badania symulacyjne dotyczą estymacji chwilowych częstotliwości komponentów niestacjonarnych sygnałów wielokomponentowych. Model sygnału opisano zależnością 1.1. Autor pragnie wyjaśnić, że zaproponowane w niniejszej pracy parametryczne transformacje czasowo-częstotliwościowe zaprojektowane zostały do estymacji zmiennych w czasie częstotliwości składowych występujących w sygnale. W związku z tym, w badaniach symulacyjnych nie badano jakości estymacji mocy poszczególnych składowych. Problem estymacji mocy tych składowych został krótko omówiony w rozdziale 2.4.3. Dokładną analizę problemu estymacji mocy sygnałów wielokomponentowych można znaleźć w [1][5][10].

4.1 Procedury estymacji częstotliwości i miary jakości estymatorów

Uzyskanie estymatorów częstotliwości dla różnych algorytmów JTFT nie odbywało się w jednakowy sposób. W przypadku adaptacyjnego modelu ESPRIT (rozdział 3.2), oznaczanego na wykresach jako aESPRIT, częstotliwości komponentów wyznaczone były bezpośrednio przez algorytm. Natomiast dla adaptacyjnego modelu AR (rozdział 3.1), oznaczanego na wykresach jako aAR, estymatory częstotliwości składowych można uzyskać poprzez analizę transformaty czasowo-częstotliwościowej lub poprzez analizę zmienności w czasie parametrów modelu AR. Pierwszy sposób polega na wyznaczeniu \(M \) lokalnych maksimów estymatora \(\hat{P}(n, f) \) dla każdej chwili czasu \(n \); gdzie \(M \) jest rzędem modelu. Metoda ta ogranicza jednak rozdzielczość estymacji częstotliwości ponieważ JTFT, wyznaczana na podstawie zależności 2.50c, korzysta z algorytmu FFT. W efekcie otrzymujemy częstotliwości dyskretne z maksymalną dokładnością \(1/N \), gdzie \(N \) jest długością transfor-
maty FFT. Drugi sposób estymacji częstotliwości składowych polega na wyznaczeniu biegunów na podstawie parametrów modelu AR dla każdej chwili czasowej \(n \). Argumenty tych biegunów są szukanymi pulsacjami, które pozwalają na wyznaczenie częstotliwości unormowanych. Dzięki temu unika się błędu dyskretyzacji częstotliwości. Prezentowane w dalszej części pracy wyniki zostały uzyskane przy zastosowaniu drugiego sposobu. Do wyznaczenia biegunów modelu AR użyto funkcji `roots()` dostępnej w Matlabie.

W przypadku spektrogramu częstotliwości składowe były określone przez wyznaczenie \(M \) lokalnych maksimów funkcji \(P(n, f) \), gdzie \(M \) jest ilością komponentów w sygnale modelowym. Jak już wspomniano metoda ta wprowadza błąd dyskretyzacji równy \(1/N \), dlatego w eksperymentach długość transformaty FFT wynosiła \(N = 4096 \), w efekcie błąd spowodowany dyskretyzacją częstotliwości można pominać.

Estymatory częstotliwości komponentów uzyskane za pomocą proponowanych algorytmów parametrycznych zostały porównane z estymatorami uzyskanymi za pomocą spektrogramu. Jakość estymatorów oceniono na podstawie dwóch wielkości: wariancji estymatorów częstotliwości i obciążenia tych estymatorów.

Niech \(d^2_f(n) \) oznacza chwilową wariancję estymatorów częstotliwości składowych. Wariancja ta jest średnią arytmetyczną wariancji estymatorów częstotliwości każdej składowej w danej chwili czasu:

\[
d^2_f(n) = \frac{1}{M} \sum_{i=1}^{M} \left(\mathbb{E}\{\hat{f}^2_i(n)\} - \mathbb{E}^2\{\hat{f}_i(n)\} \right) =
\approx \frac{1}{M} \sum_{i=1}^{M} \left(\frac{1}{K} \sum_{k=1}^{K} \hat{f}_{i,k}(n)^2 - \left(\frac{1}{K} \sum_{k=1}^{K} \hat{f}_{i,k}(n) \right)^2 \right)
\]

(4.1)

gdzie \(K \) oznacza liczbę przeprowadzonych symulacji, \(\hat{f}_{i,k}(n) \) oznacza estymator częstotliwości \(i \)-tej składowej w \(k \)-tej symulacji. Oczywiście liczba symulacji \(K \) musi być odpowiednio duża, aby uśrednianie po zbiorze symulacji uznać za dobrej jakości estymator wartości oczekiwanej.

Analogicznie zdefiniujemy chwilowe obciążenie estymatorów częstotliwości składowych:

\[
b^2_f(n) = \frac{1}{M} \sum_{i=1}^{M} \left(\mathbb{E}^2\{\hat{f}_i(n)\} - \mathbb{E}\{\hat{f}_i(n)\} \right)
\]

(4.2)

gdzie \(\hat{f}_{i,k}(n) \) oznacza faktyczną częstotliwość \(i \)-tej składowej w \(k \)-tej symulacji. Estymacja \(b^2_f(n) \) bezpośrednio ze wzoru powoduje trudności związane
z koniecznością przechowywania wszystkich wyników cząstkowych. Dla sygnału o długości T, złożonego z M komponentów konieczne jest pamiętanie $T \ast M \ast K$ wyników. Ze względu na te trudności w praktyce skorzystano z zależności 4.3 udowodnionej w [3]:

$$e^2 = d^2 + b^2 \Rightarrow b^2 = e^2 - d^2$$ (4.3)

gdzie e^2, d^2, b^2 oznaczają odpowiednio błąd średniokwadratowy, wariancję i obciążenie dowolnego estymatora. Zatem, niech $e_j^2(n)$ oznacza uśredniony po wszystkich składowych średniokwadratowy błąd estymacji częstotliwości składowych:

$$e_j^2(n) = \frac{1}{M} \sum_{i=1}^{M} \mathbb{E}\{(f_i(n) - \hat{f}_i(n))^2\} =$$

$$\approx \frac{1}{MK} \sum_{i=1}^{M} \sum_{k=1}^{K} (f_{i,k}(n) - \hat{f}_{i,k}(n))^2$$ (4.4)

Wtedy na podstawie zależności 4.3 możemy wyznaczyć obciążenie estymacji częstotliwości składowych:

$$b_j^2(n) = e_j^2(n) - d_j^2(n)$$ (4.5)

Wszystkie wykresy prezentujące chwilkowe obciążenie estymacji częstotliwości składowych zamieszczone w pracy uzyskano więc pośrednio na podstawie zależności 4.5.

Ponieważ badane sygnały były niestacjonarne i częstotliwości składowe z próbką na próbkę ulegały zmianie, końcowym etapem obliczeń było uśrednienie po czasie wielkości uzyskanych zgodnie z zależnościami 4.1 i 4.5.

$$d_j^2 = \frac{1}{N} \sum_{n=0}^{N-1} d_j^2(n)$$ (4.6)

$$e_j^2 = \frac{1}{N} \sum_{n=0}^{N-1} e_j^2(n)$$ (4.7)

$$b_j^2 = e_j^2 - d_j^2$$ (4.8)

Uzyskane w ten sposób wartości potraktowane zostały jako mierniki jakości estymacji częstotliwości składowych.
4.2 Ogólne warunki przeprowadzonych symulacji

Jakość estymacji częstotliwości składowych uzyskanych na podstawie parametrycznych JTFT zbadało przy pomocy symulacji komputerowych. Wykorzystano do tego oprogramowanie Matlab ver. 5.x firmy MathWorks. Proprowane eksperymenty przeprowadzone zostały w następujący sposób:

1. W każdym eksperymencie przeprowadzono $K = 1000$ symulacji z losowym szumem dodawanym do sygnału z zachowaniem wymaganego stosunku sygnał/szum - SNR, oraz z losowymi częstotliwościami komponentów.

2. Przyjęta długość sygnałów modelowych wyniosła $T = 60$ próbek.

3. Do każdego sygnału dodawano losowy szum biały o ustalonym stosunku sygnał-szum SNR.

4. Każdy eksperyment przeprowadzono dla następujących wartości SNR: 30 dB, 20 dB, 10 dB, 5 dB, 3 dB, 0 dB i -3 dB.

5. Wariancję estymacji częstotliwości składowych sygnałów modelowych, a także obciążenie (zależność 4.1 i 4.2) wyznaczono metodą uśredniania po zbiorze symulacji.

6. W trakcie wyznaczania uśrednionej wariancji i obciążenia estymacji częstotliwości składowych (zależność 4.6 i 4.8) uwzględniono naturę algorytmów adaptacyjnych, które w początkowej fazie działania wyznaczają estymatory obarczone bardzo dużymi błędami, rezygnowając w uśrednieniu po czasie z wyników uzyskanych dla pierwszych sześciu próbek.

7. W celu ograniczenia poszukiwania częstotliwości komponentów do dodatniej części widma sygnał każdorazowo poddawano transformacji Hilberta (zależność 1.2).

8. Sygnały modelowe były sygnałami o wartościach zespolonych.

9. Sygnały modelowe zawierały dwa komponenty sinusoidalne o zmiennych w czasie częstotliwościach i szum.

10. Wobec 7,8,9 rzęd modelu wyniósł $M = 2$. Jedynie w ostatnim doświadczeniu badany sygnał zawierał $M = 5$ sinusoidalnych komponentów zespolonych.
11. W każdym eksperyencie moc obydwu komponentów była taka sama. Wyjątkiem był eksperyment, w którym jedna ze składowych zanikała. Można to rozpatrywać jako zmianę mocy komponentu z jedności na zero.

13. Przyjęto długość transformaty Fourier’a $N = 4096$. Przyjęta długość wpływia błąd estymacji częstotliwości spośród wszystkich $1/N \approx 0.00024$, natomiast wariancja estymacji częstotliwości składowych jest w najlepszym przypadku (dla SNR=30dB) o około rząd większa. Ponadto, ponieważ częstotliwości składowe w sygnałach modelowych wybierano losowo w każdej symulacji, można przyjąć, że dyskretyzacja nie wprowadziła dodatkowego obciążenia estymatorów.

4.3 Porównanie algorytmu AR ze stałym współczynnikiem zapominania i proponowanego algorytmu aAR

W eksperyencji tym porównano jakość estymatorów częstotliwości komponentów uzyskanych na podstawie modelu AR ze stałym współczynnikiem zapominania dla różnych wartości tego współczynnika, z jakością estymatorów uzyskanych na podstawie modelu AR z adaptacyjnie zmienianym współczynnikiem zapominania. Na wykresie 4.1 prezentowane są wartości wariancji (oznaczone znakiem •) i obciążenia (oznaczone znakiem *). Kolorem czarnym oznaczono wariancję i obciążenie estymacji częstotliwości dla algorytmu aAR. Pozostałych kolorów użyto do oznaczenia wyników uzyskanych dla algorytmu ze stałym współczynnikiem zapominania. Zamieszczona legenda przyporządkowuje wartości stałego współczynnika λ opowiednim kolorom na wykresie.

Z wykresu tego wynika, że zastosowanie zmiennego współczynnika pozwala znacznie zmniejszyć wariancję estymatorów częstotliwości do poziomu osiąganego dla $\lambda = const = 0.9$, przy jednoczesnym zmniejszeniu obciążenia tych estymatorów.
4.4 Porównanie klasycznego algorytmu ESPRIT z proponowanym algorytmem aESPIRT

W rozdziale 3.2 zaproponowano adaptacyjny algorytm - aESPRIT, który jak pokazano teoretycznie, wymaga mniejszej liczby obliczeń niż algorytm dokładny opisany w rozdziale 2.4.2. Pozostaje pytanie, czy zmniejszenie liczby obliczeń nie powoduje znacznego pogorszenia jakości estymatorów? W doświadczeniu, użyto sygnału złożonego z dwóch komponentów. Częstotliwość jednego z nich zmieniała się nieliinowo; częstotliwość drugiego zmieniała się liniowo, ale w połowie czasu trwania sygnału następowała skokowa zmiana tej częstotliwości. Na wykresie 4.2 zaprezentowano jedną z przykładowych symulacji wykonanej dla SNR=30dB. Kolorem fioletowym oznaczono faktyczne częstotliwości komponentów, kolorem zielonym oznaczono estymatory częstotliwości komponentów uzyskane na podstawie proponowanego algorytmu aESPRIT, a kolorem niebieskim na podstawie oryginalnego algorytmu ESPRIT. Główne różnice występują przy startie algorytmu, oraz w momentach skokowej zmiany częstotliwości, co wynika z natury algorytmów adaptacyjnych. Analiza wykresu 4.2 i kolejnego 4.3 wskazuje, że estymatory częstotliwości uzyskane za pomocą obu metod różnią się nieznacznie.

Wykres 4.3 prezentuje wartości wariancji (oznaczone znakiem o) i obcią-
Rysunek 4.2: Częstotliwość sygnału modelowego i estymatory częstości komponentów uzyskane na podstawie klasycznego algorytmu ESPRIT i algorytmu aESPRIT

Znajduje (oznaczone znakiem *) estymatory częstości uzyskanych za pomocą klasycznego algorytmu ESPRIT (kolor niebieski) i algorytmu aESPRIT (kolor zielony). Można zauważyć, że wzrost zawartości szumu w sygnale powoduje niemal liniowy wzrost wariancji estymatorów częstości komponentów. Ponadto można zauważyć, że SNR ma niewielki wpływ na obciążenie estymatorów częstości.

Na podstawie przeprowadzonych symulacji można stwierdzić, że propozowany w rozdziale 3.2 adaptacyjny algorytm ESPRIT można stosować z powodzeniem zamiast algorytmu dokładnego, gdyż nie wnosi on znaczących błędów do estymacji częstości komponentów, a ilość wymaganych obliczeń jest znacznie mniejsza. Prezentowane w dalszej części tej pracy wyniki uzyskano za pomocą algorytmu aESPRIT.

W dalszej kolejności zbadano wpływ współczynnika μ na jakość estymacji częstości komponentów w algorytmie aESPRIT. Na wykresie 4.4 zaprezentowano jedną z przykładowych symulacji. Z wykresu można wnioskować, że dla współczynnika μ bliskiego jedności, wariancja estymacji częstości komponentów jest mniejsza niż dla małego μ. Ponadto dla dużego μ głównym składnikiem błędu estymacji częstości komponentów staje się obciążenie. Jest to spowodowane przez zbyt wolną adaptacją algorytmu - algorytm nie nadąża za zmianami częstości komponentów w sygnale. Znajduje to potwierdzenie w wynikach zaprezentowanych na wykresach 4.5, 4.6, 4.7.
Rysunek 4.3: Wariancja i obciążenie estymacji częstości składowych uzyskanych na podstawie klasycznego algorytmu ESPRIT i algorytmu aESPRIT

Rysunek 4.4: Częstość sygnału modelowego i estymatory częstości komponentów uzyskane na podstawie algorytmu aESPRIT, dla różnych współczynników μ
Rysunek 4.5: Zależność wariancji i obciążenia estymacji częstotliwości składowych uzyskanych na podstawie algorytmu aESPRIT od μ, dla różnych rozmiarów macierzy autokorelacji N

Rysunek 4.6: Zależność obciążenia estymacji częstotliwości składowych uzyskanych na podstawie algorytmu aESPRIT od μ, dla różnych rozmiarów macierzy autokorelacji N
Rysunek 4.7: Zależność wariancji estymacji częstotliwości składowych uzyskanych na podstawie algorytmu aESPRIT od μ, dla różnych rozmiarów macierzy autokorelacji N

Szczegółowa analiza tych wyników pozwala stwierdzić, że:

- minimum obciążenia estymacji częstotliwości komponentów jest osiągane dla wartości współczynnika μ ∈ (0,5, 0,7) niezależnie od poziomu szumów zawartych w sygnale,

- zwiększenie współczynnika μ prowadzi do zmniejszenia wariancji estymacji częstotliwości komponentów,

- dla dużych wartości SNR wariancja estymacji częstotliwości jest porównywalna z obciążeniem i wtedy należy skupić się na minimalizacji wariancji,

- zwiększenie rozmiaru N estymowanej macierzy autokorelacji (zależność 2.61) powoduje zmniejszenie wpływu współczynnika μ na wariancję estymacji częstotliwości komponentów,

- korzystne jest zwiększenie rozmiaru N estymowanej macierzy autokorelacji ze względu na zmniejszenie obciążenia estymacji częstotliwości, zwiększa to jednak koszty obliczeniowe.
4.5 Ocena jakości estymatorów częstotliwości dla sygnałów niestacjonarnych

4.5.1 Jakość estymacji przy liniowej zmianie częstotliwości komponentów

W eksperymencie tym sygnał modelowy składał się z dwóch komponentów. Częstotliwość pierwszego komponentu rosła liniowo, a częstotliwość drugiego komponentu maleła liniowo. Częstotliwości początkowe i końcowe wybierano losowo z przedziałów (0.05, 0.15) i (0.35, 0.45). Wykres 4.8 prezentuje wyniki estymacji częstotliwości dla jednej z symulacji przy SNR = 30dB. Kolorami fioletowym oznaczono dane częstotliwości komponentów sygnału modelowego. Kolorami niebieskim, zielonym i czerwonym oznaczono estymatory częstotliwości komponentów uzyskane odpowiednio na podstawie spektrogramu, algorytmu aESPRIT i algorytmu aAR.

Na wykresie 4.9 zaprezentowano wpływ szumu na wariancję (oznaczoną znakiem \circ) i obciążenie (oznaczone znakiem $*$) estymatorów częstotliwości komponentów. Zgodnie z oczekiwaniami wzrost zawartości szumu w sygnale powoduje pogorszenie jakości estymatorów. Z wykresu wynika, że obciąże-
Rysunek 4.8: Przykład estymacji częstotliwości komponentów w przypadku liniowej zmiany tych częstotliwości dla \(\text{SNR} = 30 \text{dB} \)

Rysunek 4.9: Zależność wariancji i obciążenia estymacji częstotliwości w przypadku liniowej zmiany tych częstotliwości od zawartości szumu w sygnale
Rysunek 4.10: Przykład estymacji częstotliwości komponentów w przypadku nieliniowej zmiany tych częstotliwości dla SNR=30dB

nie estymacji częstotliwości składowych jest niemal o dwa rzędy mniejsze od wariancji i to niezależnie od SNR. Można więc przyjąć, że średniokwadratowy błąd estymacji częstotliwości w przypadku liniowej zmiany częstotliwości komponentów jest równy wariancji estymacji częstotliwości komponentów. Jednocześnie należy zauważyć, że obie proponowane metody estymacji częstotliwości komponentów wykazują lepszą jakość estymatorów niż klasyczny spektrogram.

4.5.2 Jakość estymacji przy nieliniowej zmianie częstotliwości komponentów

Sygnał modelowy składał się z dwóch komponentów, których częstotliwość zmieniła się w sposób sinusoidalny. Częstotliwość minimalną i maksymalną pierwszego komponentu wybierano losowo z przedziału (0.05, 0.25), a drugiego komponentu z przedziału (0.3, 0.45). Ponadto faza pierwszego komponentu była losowa.

Na rysunku 4.10 zaprezentowano jedną z przykładowych symulacji dla SNR=30dB. Kolorami fioletowym oznaczono zadane częstotliwości komponentów. Kolorami niebieskim, zielonym, czerwonym oznaczono odpowiednio estymatory częstotliwości składowych uzyskane na podstawie spektrogramu, algorytmu aESPRIT i algorytmu aAR. W spektrogramie użyte zostało okno prostokątne o długości 15 próbek.
Rysunek 4.11: Zależność wariancji i obciążenia estymacji częstości w przypadku nieliniowej zmiany tych częstości od zawartości szumu w sygnale.

W spektrogramie często dochodzi do sytuacji, w której prążki boczne (spowodowane krótkim oknem czasowym) mają większą moc od prążków zasadniczych i dlatego estymatory częstości komponentów obciążone są dużymi błędami przypadkowymi. Natomiast estymatory częstości używane za pomocą algorytmu aAR wykazują większe obciążenie. Jest to spowodowane tym, że prędkość zmian częstości obu komponentów jest różna i algorytm adaptacyjnego doboru współczynnika zapominania nie wyznacza go prawidłowo. Częściowym wyjściem z tej sytuacji jest zwiększenie rzędu modelu. Jednak wtedy ilość parametrów modelu AR jest większa niż rzeczywista ilość składowych i estymatory częstości tych składowych można wyznaczyć tylko w sposób identyczny jak dla spektrogramu.

Na rysunku 4.11 zaprezentowano wpływ szumu na wariancję i obciążenie estymatorów częstości komponentów. Zgodnie z oczekiwaniami wzrost zawartości szumu w sygnale spowodował pogorszenie jakości estymatorów. W tym przypadku adaptacyjny algorytm aESPRIT okazał się znacznie lepszy od obu pozostałych algorytmów.
Rysunek 4.12: Przykład estymacji częstotliwości komponentów w przypadku skokowej zmiany tych częstotliwości dla SNR=30dB

4.5.3 Jakość estymacji przy skokowej zmianie częstotliwości komponentów

W tym przypadku sygnał modelowy składał się z dwóch komponentów sinusoidalnych o skokowej zmianie częstotliwości. Pojedynczy komponent można scharakteryzować za pomocą dwóch wielkości: częstotliwości nośnej f_0 i dewiacji częstotliwości Δf. Każdy komponent generowano na podstawie losowej sekwencji binarnej. Częstotliwość nośna f_0 modułowana była w ten sposób, że logicznemu zero przypisywano częstotliwość $f_0 - 1/2 \Delta f$, a logicznej jedynce przypisywano częstotliwość $f_0 + 1/2 \Delta f$. Częstotliwość nośna pierwszego komponentu wybierana była losowo z przedziału $f_0 \in [0.1, 0.2]$, zaś częstotliwość nośna drugiego komponentu z przedziału $f_0 \in [0.3, 0.4]$. Dewiacja częstotliwości dla obu komponentów była jednokowa i wynosiła $\Delta f = 0.1$. Czas trwania pojedynczego symbolu logicznego wynosił dziesięć próbek.

Przykładowa symulację dla SNR=30dB zaprezentowano na rysunku 4.12. Kolorem fioletowym oznaczono zadaną częstotliwość obu komponentów. Kolorami niebieskim, zielonym, czerwonym oznaczono estymatory częstotliwości komponentów uzyskane odpowiednio na podstawie spektrogramu, algorytmu aESPRIT i algorytmu aAR. Spektrogram wyznaczano z użyciem okna prostokątnego o długości 15 próbek, podobnie jak to miało miejsce w eksperymencie z liniową zmianą częstotliwości komponentów.

Na rysunku 4.13 zaprezentowano wpływ szumu na wariancję (oznaczo-
Rysunek 4.13: Zależność variancji i obciążenia estymacji częstotliwości w przypadku skokowej zmiany tych częstotliwości od zawartości szumu w sygnale

ną znakiem ○ i obciążenie (oznaczone znakiem *) estymatorów częstotliwości komponentów. Tu również zgodnie z oczekiwaniami zmniejszenie SNR spowodowało pogorszenie jakości estymatorów. W tym przypadku variancja estymacji częstotliwości komponentów dla algorytmu aAR jest minimalnie większa niż variancja spektrogramu.

Z wykresu 4.13 wynika, że obciążenie estymatorów częstotliwości nie ma dużego wpływu na jakość tych estymatorów. Ponadto można zauważyć, że najlepsze jakościowo estymatory częstotliwości uzyskano dla algorytmu aESPRIT.

4.5.4 Całkowity zanik jednej ze składowych

W sygnałach spotykanych w przyrodzie często zachodzi sytuacja, gdy jedna lub kilka składowych zanika, lub pojawiają się nowe składowe. Jest to sytuacja nieco podobna do sytuacji opisanej w poprzednim podrozdziale dotyczącym skokowej zmiany częstotliwości komponentów. Jednak przy skokowej zmianie częstotliwości nie zmieniała się ilość komponentów. Natomiast w przypadku zaniku jednego lub kilku komponentów zmienia się ich ilość w sygnale, a więc zmianie ulega również rząd modelu. Zaproponowane algorytmy nie uwzględniają takich zmian i w celu estymacji rządu modelu należy skorzystać z dodatkowych algorytmów zaproponowanych w [22][45][53]. Nie-
Rysunek 4.14: Przykład estymacji częstotliwości składowych w przypadku całkowitego zaniku jednego z komponentów

stety wszystkie znane metody estymacji rzędu modelu zawodzą dla małych wartości SNR i dlatego są mało przydatne.

Przykładową symulację przedstawiono na rysunku 4.14. Kolorem fiolowowym oznaczono zadane częstotliwości komponentów, kolorami niebieskim, zielonym, czerwowym oznaczono odpowiednio estymatory częstotliwości składowych uzyskane na podstawie spektrogramu, algorytmy aESPRIT i algorytmy aAR. Wariancję (oznaczoną znakiem ◦) i obciążenie (oznaczone znakiem ∗) estymacji częstotliwości komponentów zaprezentowano na rysunku 4.15. Charakterystyczne jest bardzo duże obciążenie estymatorów spowodowane nieuwzględnieniem zmiany rzędu modelu.

Przeprowadzono również dodatkowy eksperyment, w którym założono, że dysponujemy idealnym algorytmem estymacji rzędu modelu. Przykładową symulację zaprezentowano na rysunku 4.16, a wariancję (oznaczoną znakiem ◦) i obciążenie (oznaczone znakiem ∗) estymacji częstotliwości komponentów
Rysunek 4.15: Zależność wariancji i obciążenia estymacji częstotliwości w przypadku całkowitego zaniku jednego z komponentów od zawartości szumu w sygnale; wykres przy założeniu stałego rzędu modelu $M = 2$

Rysunek 4.16: Przykład estymacji częstotliwości składowych w przypadku całkowitego zaniku jednego z komponentów; wykres uzyskano przy założeniu, że w każdej chwili czasu znany jest rzad modelu M
Rysunek 4.17: Zależność wariancji i obciążenia estymacji częstotliwości w przypadku całkowitego zaniku jednego z komponentów od zawartości szumu w sygnale; wykres uzyskano przy założeniu, że w każdej chwili czasu znany jest rząd modelu M

Rysunek 4.18: Spektrogram sygnału z rysunku 4.14, długość FFT 1024, okno prostokątne o długości 25, SNR=30dB

62
Rysunek 4.19: JTFT uzyskane na podstawie algorytmu aESPRIT sygnału z rysunku 4.14, $\mu = 0.7$, SNR=30dB

Rysunek 4.20: JTFT uzyskane na podstawie algorytmu aAR sygnału z rysunku 4.14, długość FFT 1024, SNR=30dB
zaprezentowano na rysunku 4.17. Odpowiednie wartości wariancja i obciążenia są zbliżone do wartości uzyskanych w poprzednich eksperymentach.
Kolejne rysunki 4.18, 4.19 i 4.20 prezentują transformaty czasowo-
częstotliwościowe uzyskane odpowiednimi algorytmami. Widać wyraźny,
szybki spadek mocy komponentu po jego zaniknięciu i bardzo szybki wzrost
mocy komponentu po jego ponownym pojawieniu się. Prezentowane wyniki
były uzyskane dla SNR=30dB. Wraz ze wzrostem zawartości szumu w
sygnale zmiany te przestają być tak czytelne.

4.6 Koszt obliczeniowy proponowanych algorytmów

W eksperymentie tym porównano koszty obliczeniowe wyznaczenia estyma-
torów częstotliwości komponentów na podstawie algorytmu ESPRIT liczony-
go dokładnie, tak jak to opisano w rozdziale 2.4.2, oraz na podstawie adap-
tacyjnego algorytmu aESPRIT zaproponowanego w rozdziale 3.2. Algorytm
aESPRIT, pozwala teoretycznie na dwukrotnie mniejsze liczby obliczeń
w kroku drugim algorytmu. Jednak po uwzględnieniu faktu, że część opera-
cji odbywa się w arytmetyce zespolonej, oraz po uwzględnieniu, że na koszt
obliczeniowy wpływ mają również operacje dodawania i odejmowania oka-
zuje się, że oszczędności są nieco mniejsze. Przykładowo koszt wyznaczenia
estymatorów częstotliwości dla $M = 2, N = 2 * M$, gdzie M oznacza ilość
komponentów, N wielkość macierzy autokorelacji $\hat{R}(n)$ w każdej chwili czasu
wynosi:

- dla algorytmu ESPRIT - 4089FLOP
- dla algorytmu aESPRIT - 2557FLOP

Liczby te uzyskano przy pomocy funkcji $flops()$ dostępnej w pakiecie Matlab.
Funkcja ta zlicza wszystkie operacje zmiennoprzecinkowe przy następujących
założeniach:

- operacje dodawania i odejmowania liczone są jako 1FLOP, jeżeli za-
 chodzą na liczbach rzeczywistych i jako 2FLOP dla liczb zespolonych,
- operacje mnożenia i dzielenia liczone są jako 1FLOP, jeżeli wynik jest
 liczbą rzeczywistą i 6FLOP w przeciwnym przypadku.

Porównanie kosztu obliczeniowego dla różnych M i N prezentuje tabela
4.1. Można zauważyć, że dla $N = 2 * M$ koszt obliczeniowy algorytmu adap-
Rozważmy tablicę porównującą kosztów obliczeniowych algorytmu ESPRIT dokładnego (lewe kolumny) i adaptacyjnego (prawe kolumny).

<table>
<thead>
<tr>
<th>M</th>
<th>$N = 2 \times M$</th>
<th>$N = 3 \times M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4089</td>
<td>11525</td>
</tr>
<tr>
<td>3</td>
<td>13491</td>
<td>34702</td>
</tr>
<tr>
<td>4</td>
<td>31486</td>
<td>81225</td>
</tr>
<tr>
<td>5</td>
<td>56652</td>
<td>152746</td>
</tr>
<tr>
<td>6</td>
<td>98017</td>
<td>253233</td>
</tr>
<tr>
<td>7</td>
<td>145716</td>
<td>390147</td>
</tr>
<tr>
<td>8</td>
<td>216927</td>
<td>580067</td>
</tr>
<tr>
<td>9</td>
<td>305347</td>
<td>793216</td>
</tr>
<tr>
<td>10</td>
<td>408518</td>
<td>1069943</td>
</tr>
<tr>
<td>11</td>
<td>544255</td>
<td>1416076</td>
</tr>
<tr>
<td>12</td>
<td>709907</td>
<td>1816619</td>
</tr>
<tr>
<td>13</td>
<td>868106</td>
<td>2339409</td>
</tr>
<tr>
<td>14</td>
<td>1081648</td>
<td>2966050</td>
</tr>
<tr>
<td>15</td>
<td>1312769</td>
<td>3653558</td>
</tr>
<tr>
<td>16</td>
<td>1604581</td>
<td>4378750</td>
</tr>
<tr>
<td>17</td>
<td>1896407</td>
<td>5247893</td>
</tr>
<tr>
<td>18</td>
<td>2220197</td>
<td>6152719</td>
</tr>
<tr>
<td>19</td>
<td>2596557</td>
<td>7206877</td>
</tr>
<tr>
<td>20</td>
<td>3066309</td>
<td>8504092</td>
</tr>
</tbody>
</table>

Tabela 4.1: Porównanie kosztów obliczeniowych algorytmu ESPRIT dokładnego (lewe kolumny) i adaptacyjnego (prawe kolumny).
Rysunek 4.21: Zależność kosztów obliczeniowych wyznaczenia estymatorów częstotliwości komponentów wyrażone we FLOP-ach od ilości komponentów spektrogramu niemal nie zależy od \(M \), gdyż koszt wyznaczenia \(M \) maksimów widma dla każdej chwili czasu jest pomijalnie mały w stosunku do kosztu wyznaczenia samego spektrogramu. Natomiast koszt obliczeniowy pozostałych dwóch algorytmów rośnie bardzo szybko ze wzrostem \(M \). Z wykresu 4.21 można również odczytać wartości graniczne zakładanego rzędu modelu \(M \), poniżej których oplaca się stosować metody parametryczne estymacji częstotliwości. Dla adaptacyjnego algorytmu aAR wartość ta wynosi 15, a dla adaptacyjnego algorytmu aESPRIT wartość ta wynosi 10.

4.7 Podsumowanie

Na podstawie przeprowadzonych symulacji można stwierdzić, że parametryczne transformacje czasowo-częstotliwościowe są bardzo użytecznym narzędziem analizy sygnałów złożonych z niestacjonarnych komponentów sinusoidalnych. Parametryczne JTFT mogą znaleźć zastosowanie szczególnie w zadaniach, w których najistotniejsze jest określenie częstotliwości komponentów. Zarówno adaptacyjny model AR, jak i adaptacyjny algorytm ESPRIT pozwalają wyznaczyć dokładniejsze estymatory częstotliwości komponentów niż klasyczny spektrogram. Nadmienić należy, iż większość autorów wskazuje spektrogram z oknem prostokątnym jako najlepszą nieparametryczną metodę estymacji częstotliwości sygnału [22][46].
Z trzech przebadanych metod estymacji zmiennych w czasie częstotliwości komponentów najlepsze własności wykazuje algorytm aESPRIT. Jednak w takich zastosowaniach gdzie niezwykle istotna jest złożoność obliczeniowa można z powodzeniem stosować algorytm aAR godząc się na nieco gorszą jakość estymacji częstotliwości komponentów.
Rozdział 5

Badanie rzeczywistych sygnałów

Symulacje komputerowe opisane w rozdziale poprzednim pozwalają ocenić jakość estymacji JTFT. Ocena ta jest miarodajna gdyż, wiele obserwowanych w rzeczywistości sygnałów ma naturę harmonijną. Do takich sygnałów należą sygnały telekomunikacyjne, sygnały radarowe, fragmenty sygnału mowy ludzkiej (fonemy odpowiadające samogłoskom i fonemy dźwięczne) oraz wiele innych. Tak więc proponowany wielokomponentowy model sygnału (zależność 1.1) dobrze opisuje rzeczywistość pomiarową.

Poniżej przedstawiono wyniki analizy zmiennych w czasie częstotliwości rzeczywistych sygnałów niestacjonarnych uzyskane przez pomoc dwóch zaproponowanych w niniejszej pracy algorytmów do znaczy: adaptacyjnego algorytmu aAR i adaptacyjnego algorytmu aESPRIT, oraz przy pomocy spektrogramu jako punktu odniesienia.

- W badaniach wykorzystano oprogramowanie Matlab ver. 5.x MathWorks.

- Zebrane sygnały zawierały tylko wartości rzeczywiste i przed analizą przekonwertowano je na sygnały o wartościach zespolonych za pomocą transformacji Hilberta.

- Ponadto w prezentacji wyników jest pewna różnica w stosunku do rozdziału poprzedniego, gdyż poprzedni rozdział dotyczył estymacji częstotliwości komponentów. W niniejszym rozdziale estymowano również moc komponentów. Na wykresach na osi poziomej zaznaczone czas, a na osi pionowej częstotliwość, z uwzględnieniem rzeczywistej częstotliwości próbkowania sygnału. Moc komponentów oznaczono za pomocą palety kolorów oznaczonej w pakietie Matlab jako ’hot’. Kolor czarny odpowiada maksymalnej mocy, a kolor biały mocy zerowej.
• Na wszystkich wykresach umieszczono (od góry): wykres czasowy, spektrogram, JTFT uzyskana algorytmem aESPRIT, JTFT uzyskana algorytmem aAR.

• Ze względu na ograniczoną rozdzielczość wydruków komputerowych na prezentowanych wykresach ograniczono do 1024 długość stosowanej transformaty FFT.

• Wszystkie omawiane wykresy umieszczono na końcu rozdziału ze względu na ich rozmiary.

5.1 Sygnały telekomunikacyjne

Zwykle obserwowane sygnały telekomunikacyjne zawierają częstości nośną, która jest zmodulowana amplitudowo, fazowo, częstościowo lub poprzez kombinację tych modulacji. W całym widmie sygnałów telekomunikacyjnych może wystąpić wiele takich sygnałów, lecz poprzez filtrację można wydzielić pasmo częstości, w którym mieści się jeden interesujący z punktu widzenia odbiorcy sygnał. Zjawiskiem niedopuszczalnym w tradycyjnych systemach telekomunikacyjnych jest sytuacja kiedy na jednej częstości nośnej (lub w tym samym pasmie częstości) emitowanych jest kilka sygnałów telekomunikacyjnych. Można więc przyjąć, że sygnał telekomunikacyjny składa się z pojedynczego komponentu sinusoidalnego o zmiennych parametrach. W tej sytuacji w odpowiednich zależnościach w proponowanych adaptacyjnych algorytmach estymacji częstości należy przyjąć rząd modelu \(M = 1 \). W przypadku kiedy sygnał zawiera jeden komponent, teoretycznie spektrogram i oba proponowane algorytmy parametryczne pozwalają uzyskać estymatory częstości tego komponentu o porównywalnej jakości. Jednak jak zostało to pokazane na wykresie 4.21 Spektrogram jest wielokrotnie bardziej kosztowny obliczeniowo od obu proponowanych algorytmów. Można zminimalizować koszt obliczeniowy spektrogramu stosując krótszą transformację FFT, jednak wtedy uzyskane estymatory częstości będą obarczone dużym błędem dyskretyzacji częstości.

Przykładowe sygnały telekomunikacyjne i ich różne transformaty czasowo-częstotliwościowe zaprezentowano na rysunkach 5.1, 5.2, 5.3 i 5.4. Sygnały zostały zarejestrowane w Wojskowej Akademii Technicznej w Warszawie. Pierwszy i drugi sygnał zarejestrowano w odległości kilku kilometrów od anteny nadajnika radioliniowej z modulacją MSK i QPSK. Na rysunku 5.1 zaprezentowano zmienne w czasie widmo sygnału po przemieszeniu go na częstość pośrednią. Widoczne są dokładne zmiany częstości sygnału. Na rysunku 5.2 zaprezentowano zmienne w czasie widmo sygnału po
przeniesieniu go na czestotliwość pośrednią 5 MHz. Zgodnie z oczekiwaniami
czestotliwość sygnału nie ulega zmianie a widoczne fluktuacje są spowodowane
malym stosunkiem SNR i błędami estymacji. Trzeci sygnał (rysunek 5.3)
jest sygnałem emitowanym przez stację bazową systemu systemu GSM. Szerokość
pasma GSM wynosi 25 MHz (od 890 MHz do 915 MHz). W tym pasmie
umieszczonych jest 125 kanalów o szerokości pasma 200 kHz. Czas trwania
jednej ramki sygnału GSM wynosi 577 µs, a przerwa pomiędzy ramkami wynosi około 3.7 µs. Na rysunku 5.4 wybrano jeden z kanalów (czestotliwość 2.4 MHz) z rysunku 5.3.

Choc prezentowane wykresy transformat czasowo-czestotliwościowych sygnałów telekomunikacyjnych (rysunki 5.1, 5.2, 5.3 i 5.4) uzyskane różnymi algorytmami nie są w zasadniczy sposób różne, to jednak dokładność określenia czestotliwości oraz efektywność obliczeniowa algorytmów parametrycznych są zdecydowanie lepsze.

5.2 Sygnały radarowe

Obecnie istnieje bardzo wiele typów radarów emitujących bardzo zróżnicowane sygnały radiowe. Autor miał dostęp jedynie do sygnałów pochodzących z radarów impulsowych z liniową zmianą częstotliwości. Sygnały te zarejestrowano z niewielkiej odległości od radaru.

Na rysunku 5.5 zaprezentowano wyniki analizy jednego z wielu zarejestrowanych impulsów radara pracującego z liniową zmianą częstotliwości. Na wykresie tym widoczne są dwie fazy generacji impulsu. Pierwsza z nich trwająca od 2 µs do około 6 µs jest stanem przejściowym (informacja potwierdzona przez specjalistów z WAT). Druga faza jest stanem ustalonym z widoczną liniową zmianą częstotliwości. Stan przejściowy jest charakterystyczny dla danego typu radaru, a nawet dla danego egzemplarza radaru. Tak więc precyzyjne określenie zmian częstotliwości w czasie pozwala na łatwiejszą identyfikację egzemplarza, a to jest zagadnienie bardzo istotne z wojskowego punktu widzenia. Porównanie wyników estymacji transformacji czasowo-czestotliwościowej dla sygnałów radarowych wynika, że najlepsze wyniki można uzyskać przy pomocy algorytmu aESPRIT.

5.3 Sygnały sejsmiczne

Sygnały sejsmiczne są falami propagowanymi w górotworze, powstalymi w wyniku wstrząsów ziemi. Sygnały te zarejestrowane są przez sejsmometry. Natura tych sygnałów jest skomplikowana, ale można je opisać przy pomocy
modelu w którym zakłada się, że krótkotrwałe (a w związku z tym sze
rokopasnowe) pobudzenie propagowane jest przez górotwór o charakterze
rezonansowym [29]. Fała rozprzestrzenia się od epicentrum we wszystkich
kierunkach. Oczywiście te pobudzenia mogą nastąpić w krótkich odcinkach
czasu i w różnych miejscach. W związku z tym analiza sygnałów sejsmicznych
jest trudna, gdyż sejsmometr rejestruje nakładające się drgania harmoniczne
występujące losowo na osi czasu i stłumione w różnym stopniu.

Szczegółowa analiza zmiennego w czasie widma takich sygnałów dostarcza
wielu cennych informacji o budowie górotworu, o stanie naprężeń w górotwo-
rze itp.

Na rysunkach 5.6, 5.8 i 5.7 przedstawiono kolejno wyniki analizy widmo-
wej sygnałów zarejestrowane przez sejsmometry o numerach odpowiednio 25,
13 i 29. Sejsmometry te rozmieszczone są na terenach LGOM w kopalni ZG
Rudna. Sejsmometry 13-ty i 29-ty są położone mniej więcej na tym samym
kierunku patrząc od epicentrum drgań. Sejsmometr 29-ty znajduje się w od-
ległości około 1 km, podczas kiedy sejsmometr 13-ty znajduje się w odległości
około 2.5 km od epicentrum drgań. Ponieważ oba sejsmometry leżą na tym
samym kierunku rozechodzenia się fali struktura czasowo-częstotliwościowa
obu zarejestrowanych sygnałów jest podobna. Można zauważyć, że struktura
czasowo-częstotliwościowa sygnału zarejestrowanego przez sejsmometr 13-ty
jest opóźnioną w czasie i wzbogaconą falą sejsmiczną, która została zareje-
strowana przez sejsmometr 29-ty.

Natomiast sejsmometr 25-ty położony jest w odległości około 800 m, ale
na kierunku innym od pozostałych dwóch sejsmometrów. Z tego powodu
struktura czasowo-częstotliwościowa zarejestrowanego sygnału jest odmien-
ną. Częstotliwości rezonansowe górotworu są niemal stałe.

Ponadto wyraźnie widoczne jest, że algorytm aAR nie nałąga za bardzo
szybkimi zmianami widma sygnału sejsmicznego. Znacznie lepsze rezulta-
ty uzyskano przy zastosowaniu algorytmu aESPRIT. Algorytm ten znacz-
nie szybciej reaguje na zmiany widma i pozwala na najdokładniejszą anali-
zę struktury czasowo-częstotliwościowej sygnału sejsmicznego. Ponadto moż-
na zauważyć, że spektrogram nie pozwala na szczegółową analizę struktury
czasowo-częstotliwościowej sygnału.

5.4 Sygnały mowy

Bardzo ogólnie patrząc w sygnałach mowy można wyróżnić fonemy dźwięcz-
ne i szumowe. Nie wnikając zbytnio w szczegóły można przyjąć, że fonemy
dźwięczne powstają na skutek pobudzenia strun głosowych przepływającym
przez krtą powietrzem. Powstająca tam fała dźwiękowa trafia do głosiń
(jamy ustnej i częściowo do jamy nosowej). Ogólnie przyjęto, że dobrym modelem takiego systemu jest połączenie kilku do kilkunastu komór rezonansowych, pobudzanych tonem krzepiowym. W efekcie w sygnale można zaobserwować kilka do kilkunastu częstości rezonansowych i ton krzepiowy. Zupełnie inny jest mechanizm powstawania fonemów szumowych. Powszechne swobodnie przepływa przez krtań i dopiero zawirowania powietrza w okolicach zębów i ust powodują powstanie dźwięku. W związku z tym w algorytmach analizy mowy wykorzystuje się więc zwykle dwa różne modele. Wyróżnia się jeszcze kilka innych rodzajów fonemów, lecz do analizy używa się złożenia tych dwóch modeli [2][23].

Na rysunku 5.9 przedstawiono przebieg czasowy sylaby 'stko', oraz transformaty czasowo częstościowe uzyskane na podstawie spektrogramu, algorytmu aESPRIT i algorytmu aAR. Wyniki są zgodne z oczekiwaniami. Wyraźnie widoczne są częstości rezonansowe, czyli tzw. formanty fonem tu' o' (czas trwania od 0.2s do 0.25s). W przypadku pozostałych fonemów tj. 's' (od 0 do 0.8s), 't' (od 0.11 do 0.14s) i 'k' (od 0.18 do 0.2s) częstości komponentów wskazywane przez oba proponowane algorytmy nie są mierodajne, aczkolwiek można zauważyć pewne podobieństwo do spektrogramu. Dobre wyniki algorytmu aESPRIT potwierdzają wyniki uzyskane dla następnego sygnału - wyrazu 'auto'. Wyraźnie widoczne są formanty fonemów dźwięcznych 'a', 'u' i 'o'. Co więcej możliwa jest analiza stanów przejściowych pomiędzy poszczególnymi fonemami.

W przypadku analizy fonemów dźwięcznych zakłada się, stacjonarność sygnału w krótkich przedziałach czasu (około 20ms). W najczęściej stosowanych rozwiązaniach, bazując na założeniu lokalnej stacjonarności wyznacza się parametry modelu AR, lub współczynniki cepstralne (dla każdego kolejnego odcinka czasu wyznaczane są nowe parametry). Zaproponowane w niniejszej pracy algorytmy aAR i aESPRIT nie wymagają lokalnej stacjonarności sygnału. Wobec tego możliwa jest dokładniejsza analiza stanów przejściowych. Znajomość zasad zmiany formantów przy przejściu z jednego fonema do drugiego jest obecnie uznanawana za jeden z głównych czynników pozwalających poprawić jakość mowy generowanej całkowicie sztucznie przez syntetyzatory mowy [23].

5.5 Podsumowanie

Zaprezentowane wyniki potwierdzają przydatność opracowanych algorytmów w analizie zmian częstości komponentów w sygnałach telekomunikacyj-nych i radarowych. Ponadto wyniki te potwierdzają, że analiza parametrycznych JTFT pozwala na dokładniejszą ocenę zmian częstości dominują-
cych w sygnale, gdyż parametryczne JTFT wykorzystują informację o harmonicznej naturze tych sygnałów. Nie bez znaczenia jest również fakt, że wyznaczenie częstotliwości komponentów w przypadku małej ich liczby (np. sygnały telekomunikacyjne i radarowe) jest wielokrotnie mniej kosztowne obliczeniowo przy zachowaniu jakości porównywalnej do spektrogramu o dużej rozdzielczości w dziedzinie częstotliwości.

Pozwala to wyciągnąć wniosek o dobrej jakości parametrycznych metod estymacji transformat czasowo-częstotliwościowych.
Rysunek 5.1: Sygnał radiolini pochodzący z modulacją MSK. Kolejno od góry:
przepływ czasowy, spektrogram - okno Hamming’-a-131, FFT-2048; aESPRIT
- μ = 0.9, M = 1; aAR - μ = 0.8, M = 1
Rysunek 5.2: Sygnał radiolinii pracującej z modulacją QPSK. Kolejno od góry: przebieg czasowy, spektrogram - okno Hamming'a-131, FFT-2048; aESPRIT - $\mu = 0.9$, $M = 1$; aAR - $\mu = 0.8$, $M = 1$
Rysunek 5.3: Sygnał stacji bazowej GSM. Kolejno od góry: przebieg czasowy, spektrogram - okno Hamming’a-131, FFT-2048; aESPRIT - $\mu = 0.9$, $M = 3$; aAR - $\mu = 0.8$, $M = 3$
Rysunek 5.4: Sygnał stacji bazowej GSM. Kolejno od góry: przebieg czasowy, spektrogram - okno Hamming’a-131, FFT-2048; aESPRIT - $\mu = 0.9$, $M = 1$; aAR - $\mu = 0.8$, $M = 1$
Rysunek 5.5: Sygnał radarowy. Kolejno od góry: przebieg czasowy, specrogram - okno Hamming'a-111, FFT-2048; aESPRIT - $\mu = 0.9$, $M = 1$; aAR - $\mu = 0.9$, $M = 1$
Rysunek 5.6: Sygnał sejsmiczny z sejsmografu nr 25. Kolejno od góry: przebieg czasowy, spektrogram - okno Hamming’a-151, FFT-1024; aESPRIT - $\mu = 0.98$, $M = 10$; aAR - $\mu = 0.9$, $M = 10$
Rysunek 5.7: Sygnał sejsmiczny z sejsmografu nr 29. Kolejno od góry: przebieg czasowy, spektrogram - okno Hamming'a-151, FFT-1024; aESPRIT - $\mu = 0.98$, $M = 10$; aAR - $\mu = 0.9$, $M = 10$
Rysunek 5.8: Sygnał sejsmiczny z sejsmografu nr 13. Kolejno od góry: przebieg czasowy, spektrogram - okno Hamming'a-151, FFT-1024; aESPRIT - $\mu = 0.98$, $M = 10$; aAR - $\mu = 0.9$, $M = 10$
Rysunek 5.9: Sygnał mowy - sylaba 'stko'. Kolejno od góry: przebieg czasowy, spektrogram - okno Hamming’a-151, FFT-1024; aESPRIT - $\mu = 0.95$, $M = 10$; aAR - $\mu = 0.97$, $M = 10$
Rysunek 5.10: Sygnał mowy - wyraz 'auto'. Kolejno od góry: przebieg czasowy, spektrogram - okno Hamming’a-151, FFT-1024; aESPRIT - $\mu = 0.95$, $M = 10$; aAR - $\mu = 0.97$, $M = 10$.

83
Rozdział 6
Wnioski

Celem przeprowadzonych badań było opracowanie, ocena własności, weryfikacja skuteczności i efektywności numerycznej pewnych parametrycznych transformacji czasowo-częstotliwościowych. Można było oczekiwać, że dla sygnałów będących sumą sygnałów sinusoidalnych o zmiennych w czasie parametrach i szumu, parametryczne transformacje czasowo-częstotliwościowe okazają się lepsze pod wieloma względami niż transformacje nieparametryczne. Przewidywania te zostały potwierdzone.

W pracy szczególny nacisk położono na estymację zmiennych w czasie częstotliwości poszczególnych komponentów. Problem estymacji zmiennej w czasie amplitudy komponentów jest osobnym, bardzo obszernym zagadnieniem, który w niniejszej pracy jest jedynie zasygnalizowany.

W przekonaniu autora do głównych oryginalnych rezultatów niniejszej pracy można zaliczyć modyfikację i szczegółowe przebadanie dwóch parametrycznych algorytmów estymacji zmiennych w czasie częstotliwości komponentów.

1. Pierwsza modyfikacja dotyczy algorytmu Lee-Morfa, który pozwala wyznaczyć zmienne w czasie parametry modelu autoregresji. Jedną z niepożądzanych własności tego algorytmu jest wzrost obciążeń estymatorów częstotliwości przy gwałtownych (np. skokowych) zmianach częstotliwości komponentów. Wzrost ten powstaje na skutek zastosowania stałego współczynnika zapomniania \(\lambda = \text{const.} \). Zaproponowana modyfikacja polegająca na adaptacyjnym uzależnieniu wartości współczynnika zapomniania \(\lambda(n) \) od chwилowego błędu średniokwadratowego prognozy pozwala na zmniejszenie obciążenia estymatorów częstotliwości.

2. Druga modyfikacja dotyczy algorytmu ESPRIT, który wykorzystuje rozkład macierzy autokorelacji sygnału względem wartości własnych.
W oryginale algorytm ten opracowano dla przypadku stacjonarnego, jednak można go uogólnić na przypadek niestacjonarny przez wprowadzenie zmiennej w czasie macierzy autokorelacji. Estymacja częstotliwości składowych przy pomocy uogólnionego algorytmu ESPRIT jest bardzo kosztowna obliczeniowo. Zaproponowana modyfikacja algorytmu ESPRIT pozwala uniknąć kosztownego obliczeniowo rozkładu macierzy autokorelacji względem wartości własnych dla każdej chwili czasu n przez zastąpienie tego rozkładu mnożeniem macierzy. Wprowadzona modyfikacja pozwala na zmniejszenie kosztów obliczeniowych o ponad 30% w porównaniu do uogólnionego algorytmu ESPRIT.

Przeprowadzono szczegółowe badania symulacyjne proponowanych algorytmów parametrycznych z wykorzystaniem modelowych sygnałów wielokomponentowych. Badania przeprowadzono dla sygnałów o częstotliwościach zmiennych: liniowo, nieliniowo i skokowo. Estymatory częstotliwości uzyskane metodami parametrycznymi zostały porównane z estymatorami częstotliwości uzyskanymi przy pomocy klasycznego spektrogramu, który w opinii wielu autorów jest najdokładniejszą metodą estymacji zmiennych w czasie częstotliwości składowych sygnału [46][53]. Przeprowadzone eksperymenty pozwalały na sformułowanie następujących wniosków:

1. Parametryczne transformacje czasowo-częstotliwościowe pozwalają uzyskać estymatory częstotliwości komponentów dokładniejsze niż estymatory uzyskane na podstawie spektrogramu. W nielicznych przypadkach jakość estymatorów częstotliwości komponentów uzyskana na podstawie spektrogramu zbliżała się do jakości estymatorów uzyskanych na podstawie modelu AR.

2. Statystycznie najdokładniejsze (obarczone najmniejszą wariancją i najmniejszym obciążeniem estymatorów) wyniki estymacji częstotliwości komponentów można uzyskać stosując zaproponowany adaptacyjny algorytm aESPRIT.

3. Złożoność obliczeniowa parametrycznych metod estymacji częstotliwości komponentów jest silnie uzależniona od rzędu modelu M. Dla algorytmu wykorzystującego adaptacyjny model aAR przy rzędzie modelu większym niż 16, a dla adaptacyjnego algorytmu aESPRIT już przy rzędzie modelu większym od 10 złożoność obliczeniowa jest większa niż dla klasycznego spektrogramu. Dla wyższych rzędów modelu jedynie użycie algorytmu aESPRIT może być uzasadnione, gdyż algorytm aESPRIT pozwala na uzyskanie istotnie lepszych estymatorów częstotliwości komponentów niż spektrogram.
Proponowane algorytmy opracowano pod kątem zastosowania ich do analizy sygnałów telekomunikacyjnych i radarowych. Sygnały takie są bardzo dobrze opisane przez założony wielokomponentowy model sygnału. Można jednak zauważyć, że wiele sygnałów spotykanych w przyrodzie ma naturę harmoniczną, np.: fragmenty sygnału mowy, niektóre sygnały biomedyczne, sygnały wirujących części maszyn i urządzeń i wiele innych. W związku z tym, zaproponowane w niniejszej pracy algorytmy mogą również znaleźć zastosowanie w analizie takich sygnałów. Uzyskane wyniki analizy sygnałów rzeczywistych potwierdzają wspomnianą użyteczność zaproponowanych algorytmów.

Biorąc pod uwagę powyższe wnioski, autor jest przekonany, że teza rozprawy została wydana.
Dodatek A

Algorytm ESPRIT

A.1 Dekompozycja macierzy autokorelacji względem wartości własnych

Załóżmy, że badany sygnał stacjonarny składa się z sumy jednego komponentu sinusoidalnego i z szumu o wariancji σ^2. Teoretyczne widmo takiego sygnału pokazano na rysunku A.1. Zależność 1.1 dla sumy jednego komponentu sinusoidalnego i szumu białego, w formie wektorowej można zapisać następująco:

$$x = A_0 s_0 + w$$ \hspace{1cm} (A.1)

gdzie:

$$A_0 = |A|e^{j\phi_0},$$ \hspace{1cm} (A.2)

jest zmienną losową, wektor s_0 utworzono następująco:

$$s_0 = [1, e^{j2\pi f_0}, e^{j2\pi f_0}, \ldots, e^{jN2\pi f_0}]^T$$ \hspace{1cm} (A.3)

Rysunek A.1: Widmo sumy sygnału sinusoidalnego i szumu białego
Ponieważ s_0 i w są statystycznie niezależne, więc macierz autokorelacji sygnału x będzie wyglądać następująco:

$$
R_x = E\{A_0 s_0 (A_0 s_0)^H\} + E\{ww^H\} = P_0 s_0 s_0^H + \sigma^2 I
$$

(A.4)

Po obustronnym pomnożeniu tego równania przez s_0 otrzymamy:

$$
R_x s_0 = P_0 s_0 s_0^H + \sigma^2 I s_0 = (NP_0 + \sigma^2) s_0
$$

Z zależności A.5 wynika, że wektor s_0 jest jednym z wektorów własnych macierzy autokorelacji. Macierz ta ma ponadto $N - 1$ ortogonalnych wektorów własnych, które są ortogonalne względem siebie oraz względem s_0. Oznaczymy te wektory przez u_i:

$$
R_x u_i = P_0 s_0 s_0^H u_i + \sigma^2 I u_i = \sigma^2 u_i
$$

(A.6)

Na podstawie A.5 i A.6 można zauważyć, że macierz R_x ma jedną wartość własną równą $\lambda_0 = NP_0 + \sigma^2$, oraz $N - 1$ wartości własnych równych σ^2.

Analogiczne rozumowanie można przeprowadzić dla przypadku wielokomponentowego:

$$
x = \sum_{m=1}^{M} A_m s_m + w
$$

(A.7)

$$
R_x = \sum_{m=1}^{M} P_m s_m s_m^H + \sigma^2 I
$$

(A.8)

$$
R_x s_m = (NP_m + \sigma^2) s_m
$$

(A.9)

Otrzymujemy M różnych wartości własnych λ_m, oraz $N - M$ wartości własnych równych σ^2. Przestrzeń rozpięta na wektorze obserwacji jest dzielona na dwie podprzestrzenie: podprzestrzeń sygnału rozpięta na wektorach własnych s_m, oraz podprzestrzeń szumu rozpięta na wektorach własnych u_i. Należy zauważyć, że jest to pewne uproszczenie, gdyż w rzeczywistości wektor szumu należy do obu podprzestrzeni.

A.2 Algorytm ESPRIT

W algorytmie ESPRIT wektor obserwacji x dzielony jest na dwa wektory próbek sygnału $x = [x(0), \ldots, x(N-1)]^T$, oraz $x' = [x(1), \ldots, x(N)]^T$:

$$
x = \begin{bmatrix} x \\ x(N) \end{bmatrix} = \begin{bmatrix} x(0) \\ x' \end{bmatrix}
$$

(A.10)
Niech:

\[\mathbf{A} = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_M \end{bmatrix} \] \hspace{1cm} (A.11)

wtedy zależność A.7 można zapisać w formie macierzowej:

\[\mathbf{x} = \tilde{\mathbf{S}} \mathbf{A} + \mathbf{w} \] \hspace{1cm} (A.12)

gdzie:

\[\tilde{\mathbf{S}} = \begin{bmatrix} \mathbf{s}_1 & \mathbf{s}_2 & \ldots & \mathbf{s}_M \end{bmatrix} \]
\[\mathbf{s}_m = \begin{bmatrix} 1 \\ e^{j2\pi f_m} \\ e^{2j2\pi f_m} \\ \vdots \\ e^{Nj2\pi f_m} \end{bmatrix} \] \hspace{1cm} (A.13)

Można zauważyć, że:

\[\tilde{\mathbf{s}}_m = \begin{bmatrix} 1 \\ e^{j2\pi f_m} \\ e^{2j2\pi f_m} \\ \vdots \\ e^{Nj2\pi f_m} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_m \\ e^{j2\pi f_m} \mathbf{s}_m \\ e^{2j2\pi f_m} \mathbf{s}_m \\ \vdots \\ e^{Nj2\pi f_m} \mathbf{s}_m \end{bmatrix} = \begin{bmatrix} \mathbf{s}'_m \\ e^{j2\pi f_m} \mathbf{s}_m \end{bmatrix} \] \hspace{1cm} (A.14)

Z zależności A.13 i A.14 wynika, że:

\[\tilde{\mathbf{S}} = \begin{bmatrix} \mathbf{S} & \mathbf{s}^{(N)T} \end{bmatrix} = \begin{bmatrix} - \mathbf{s}^{(0)T} & - \mathbf{S}' & - \mathbf{s}^{(0)T} \end{bmatrix} = \begin{bmatrix} \mathbf{S} \Phi & - \mathbf{S}\Phi \end{bmatrix} \] \hspace{1cm} (A.15)

gdzie macierz \(\Phi \) jest macierzą diagonalną:

\[\Phi = \begin{bmatrix} e^{j2\pi f_1} & 0 & \ldots & 0 \\ 0 & e^{j2\pi f_2} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & e^{j2\pi f_M} \end{bmatrix} \] \hspace{1cm} (A.16)

Rozważmy dowolną ortonormalną bazę \(\mathbf{B} \in \mathbb{C}^{N+1,M} \) sygnałów \(\tilde{\mathbf{s}}_m \):

\[\mathbf{B} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \ldots & \mathbf{b}_M \end{bmatrix} \] \hspace{1cm} (A.17)
Ponieważ \(\mathbf{B} \) i \(\mathbf{S} \) rozpinają tę samą podprzestrzeń, więc są związane pewną nieosobliwą transformacją \(\Psi \):

\[
\mathbf{B}\Psi = \mathbf{S} \tag{A.18}
\]

W konsekwencji możemy zapisać:

\[
\mathbf{B}'\Psi = \begin{bmatrix}
\mathbf{B} & \ldots & \ldots & \ldots \\
\mathbf{S} & \ldots & \ldots & \ldots
\end{bmatrix} \Psi = \begin{bmatrix}
\mathbf{S}^{(N)T} & \ldots \\
\mathbf{S}^{(0)T} & \ldots
\end{bmatrix} \tag{A.19a}
\]

\[
\mathbf{B}'\Psi = \begin{bmatrix}
\mathbf{B} & \ldots & \ldots & \ldots \\
\mathbf{B}' & \ldots & \ldots & \ldots
\end{bmatrix} \Psi = \begin{bmatrix}
\mathbf{S} & \ldots & \ldots & \ldots \\
\mathbf{S} & \ldots & \ldots & \ldots
\end{bmatrix} \Psi \tag{A.19b}
\]

Z zależności A.19a i A.19b otrzymujemy dwie zależności:

\[
\mathbf{B}\Psi = \mathbf{S} \tag{A.20a}
\]

\[
\mathbf{B}'\Psi = \mathbf{S}\Phi \tag{A.20b}
\]

Po podstawieniu zależności A.20a do A.20b otrzymujemy:

\[
\mathbf{B}'\Psi = \mathbf{B}\Psi\Phi \tag{A.21}
\]

\[
\mathbf{B}' = \mathbf{B}\Psi\Phi\Phi^{-1} = \mathbf{B}\mathbf{Y} \tag{A.22}
\]

Macierz \(\mathbf{Y} \) jest podobna do macierzy \(\Phi \). Oznacza to, że obie macierze mają te same wartości własne, a w konsekwencji macierz \(\mathbf{Y} \) zawiera informacje o częstotliwoścach wszystkich komponentów sinusoidalnych tak jak macierz \(\Phi \). Pozostaje kwestia wyboruortonormalnej bazy \(\mathbf{B} \). Jak pokazano w [46] najlepszą bazę stanowi wektory własne macierzy autokorelacji. Z zależności A.9 wynika, że taki wybór umożliwia dokonanie podziału podprzestrzeni rozpinanej przez wektor \(\hat{x} \) na podprzestrzeń sygnału i podprzestrzeń szumu. Jeżeli szum w jest szumem białym, wtedy:

\[
\mathbf{R}_x\mathbf{u}_m = \lambda_k\mathbf{I}\mathbf{u}_m \tag{A.23}
\]

\[
\mathbf{B} = \begin{bmatrix}
\mathbf{u}_1 & \mathbf{u}_2 & \ldots & \mathbf{u}_M \\
\mathbf{B}_1 & \mathbf{B}_2 & \ldots & \mathbf{B}_M
\end{bmatrix} = \begin{bmatrix}
\mathbf{B} & \ldots & \ldots & \ldots \\
\mathbf{B}' & \ldots & \ldots & \ldots
\end{bmatrix} \tag{A.24}
\]

Dla szumu kolorowego, jeżeli dysponujemy macierzą kowariancji tego szumu \(\mathbf{C}_w \), możemy zapisać [53]:

\[
\mathbf{R}_x\mathbf{u}_m = \lambda_k\mathbf{C}_w\mathbf{u}_m \tag{A.25}
\]
Należy zauważyć, że wektory własne macierzy autokorelacji \(\tilde{u}_m \), dla \(m = \{1, \ldots, M\} \), tworzą bazęortonormalną rozpinającą przestrzeń komponentów \(s_m \). Pozostałe wektory własne \(\bar{u}_m \), dla \(m = \{M, \ldots, N + 1\} \), można pominać w dalszych rozważaniach ponieważ nie należą one do podprzestrzeni komponentów, wobec czego nie zawierają one żadnej informacji o częstotliwościach komponentów składowych.

Pozostaje kwestia rozwiązania układu równań A.22. Macierze \(B \) i \(B' \) wyznaczone są na podstawie estymatora macierzy autokorelacji. Ponadto poniżej \(M < N \), gdzie \(M \) ilość komponentów sinusoidalnych, \(N + 1 \) długość wektora obserwacji), układ równań A.22 jest układem nadokreślonym i można go rozwiązać w sensie LS lub TLS. W pierwszym przypadku zakłada się, że wszystkie błędy pojawiają się po lewej stronie zależności:

\[
B' - \Delta' = B Y_{LS}\tag{A.27}
\]

W drugim przypadku zakłada się, że błędy pojawiają się zarówno po lewej jak i po prawej stronie:

\[
B' - \Delta' = (B - \Delta) Y_{TLS}\tag{A.28}
\]

Rozwiązaniem zależności A.28 jest macierz \(Y_{TLS} \) minimalizująca normę Frobeniusa \(||\Delta \Delta'||_F \). W [17] pokazano, że należy skonstruować macierz \(V \) (rozmiaru \(2M \times 2M \)) złożoną z prawych wektorów szczególnych macierzy \([BB'] \) i podzielić ją na cztery części o rozmiarze \(M \times M \):

\[
V = \begin{bmatrix}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{bmatrix}\tag{A.29}
\]

Rozwiązaniem układu równań A.28 jest macierz:

\[
Y_{TLS} = -V_{12} V_{22}^{-1}\tag{A.30}
\]

Podsumowując, algorytm ESPRIT składa się z następujących kroków:

1. Estymacja macierzy autokorelacji \(\hat{R}_x \) na podstawie wektora próbek \(\tilde{x} = [x(0), x(1), \ldots, x(N)]^T \)

2. Utworzenieortonormalnej bazy \(B \) przez:
(a) znajdzenie rozkładu macierzy autokorelacji względem wartości własnych

(b) wybranie M wektorów własnych skojarzonych z największymi wartościami własnymi - algorytm ESPRIT zakłada, że znana jest liczba komponentów M

3. Wyznaczenie macierzy Y

(a) w wersji LS $Y_{LS} = B^{+}B'$, gdzie B^{+} oznacza pseudoinwersję w sensie LS

(b) w wersji TLS wyznaczyć macierz Y_{TLS} z zależności A.30

4. Wyznaczenie wartości własnych macierzy Y

5. Argumenty tych wartości własnych są szukanymi częstotliwościami komponentów składowych f_m.
Dodatek B

Iteracja na podprzestrzeniach

B.1 Iteracja prosta

Załóżmy, że wartości własne symetrycznej macierzy $A \in \mathbb{R}^{N,N}$ są uporządkowane zgodnie z nierównościami:

$$|\lambda_N| < |\lambda_{N-1}| < \ldots < |\lambda_2| < |\lambda_1|$$ \hspace{1cm} (B.1)

Jeżeli wybierzemy M największych wartości własnych to wektory własne przynależą do tych wartości własnych stanowią bazę orthonormalną podprzestrzeni S_M [17][21][24]:

$$S_M = S_M(A) := \text{span}\{u_1, \ldots, u_M\}$$ \hspace{1cm} (B.2)

Wartości własne $\lambda_1, \ldots, \lambda_M$ nazwijmy wartościami dominującymi, a S_M podprzestrzenią dominującą.

Rozważmy rozkład macierzy A względem wartości własnych:

$$A = U\Lambda U^T = \sum_{m=1}^{M} u_m \lambda_m u_m^T + \sum_{m=M+1}^{N} u_m \lambda_m u_m^T$$ \hspace{1cm} (B.3)

oraz rozkład macierzy A^k:

$$A^k = U\Lambda^k U^T = \sum_{m=1}^{M} u_m \lambda_m^k u_m^T + \sum_{m=M+1}^{N} u_m \lambda_m^k u_m^T$$ \hspace{1cm} (B.4)

Można zauważyć, że dla rosnącego k rośnie dominacja M pierwszych składników zależności B.4 nad pozostałymi.
Pomnóżmy teraz macierz \(A^k \) przez dowolny wektor \(v \in \mathbb{R}^N \). Dla dostatecznie dużego \(k \) otrzymamy [17][24]:

\[
A^k v = \sum_{m=1}^{N} u_m \lambda_m^k (u_m^T v) \approx \sum_{m=1}^{M} u_m \lambda_m^k (u_m^T v) \quad (B.5)
\]

pod warunkiem, że nie wszystkie współczynniki \((u_m^T v) \) dla \(m = 1, \ldots, M \) są równocześnie zerami. Można zauważyć, że wektor \(A^k v \) prawie należy do podprzestrzeni \(S_M \). Otrzymujemy więc następujący iteracyjny algorytm (zwany czasem algorytmem potęgowym) [17][24]:

\[
v^{(k)} = A v^{(k-1)} = A^k v^{(0)} \quad (B.6)
\]

gdzie \(v^{(0)} \) jest wektorem w kroku zerowym, a wektor \(v^{(k)} \) przybliża dominujący wektor własny \(u_1 \) przynależny do dominującej wartości własnej \(\lambda_1 \). Zbieżność ciągu wektorów \(v^{(k)} \) do \(u_1 \) jest zapewniona [17][24] i można ją oszacować zgodnie z poniższą nierównością:

\[
0 \leq |\tan \varphi_k| \leq |\gamma \tan \varphi_{k-1}| \leq |\gamma^k \tan \varphi_0| = |\gamma^k \sqrt{1 - \mu^2}| \quad (B.7)
\]

gdzie:

\[
\mu = u_1^T v^{(0)} > 0 \quad (B.8a)
\]

\[
\gamma = |\lambda_2/\lambda_1| < 1 \quad (B.8b)
\]

\[
\varphi_k = \angle(u_1, v^{(k)}) \in (-\pi/2, \pi/2) \quad (B.8c)
\]

Należy zauważyć, że \(|\tan \varphi_k| \) jest dobrą miarą odległości pomiędzy wektorami \(v^{(k)} \) a wektorem \(u_1 \), ponieważ dla wektorów prostopadłych osiąga \(\infty \), a dla wektorów równoległych \(|\tan \varphi_k| = 0 \).

Jeżeli teraz dobierzemy \(M \) odpowiednich liniowo niezależnych wektorów \{\(v_1, \ldots, v_M \)\}, to wektory \{\(A^k v_1, \ldots, A^k v_M \)\} będą rozpiniały podprzestrzeń, która dla odpowiednio dużego \(k \) dobrze przybliża podprzestrzeń \(S_M \).

Wybierzmy początkowo zbiór liniowo niezależnych wektorów \{\(v_1, \ldots, v_M \)\} takich, że \(\|v_m\| = 1 \). Wektory te tworzą macierz \(V^{(0)} \in \mathbb{R}^{N \times M} \) w kroku zerowym. Można więc sformulować następujący algorytm iteracyjny:

\[
V^{(k)} = A V^{(k-1)} = A^k V^{(0)} \quad (B.9)
\]

gdzie dla odpowiednio dużego \(k \) podprzestrzeń \(V_M = \text{span}\{v_1^{(k)}, \ldots, v_M^{(k)}\} \) przybliża dominującą podprzestrzeń \(S_M = \text{span}\{u_1, \ldots, u_M\} \). W celu analizy zbieżności ciągu B.9 należy określić miarę odległości dwu podprzestrzeni.
Analogicznie do przypadku wektorowego, można zauważyć, że dobrą miarą tej odległości będzie tangens kąta pomiędzy przestrzeniami. Kąt ten oznaczony jako $\angle(V_M, S_M)$ można wyrazić następująco:

$$\angle(V_M, S_M) = \max\{\angle(v, S_M) : v \in V_M, v \neq 0\} \quad (B.10)$$

Równość $\tan \angle(V_M, S_M) = 0$ zachodzi wtedy i tylko wtedy, gdy $V_M = S_M$. Odległość jest nieskończona, czyli $\tan \angle(V_M, S_M) = \infty$, gdy podprzestrzeń V_M zawiera przynajmniej jeden wektor prostopadły do S_M. Można zauważyć, że kąt pomiędzy przestrzeniami należy zawsze do przedziału $< 0, \pi/2 >$, gdyż dla dowolnego wektora $v \in V_M$ również wektor $-v \in V_M$. Tak więc, analogicznie do przypadku iteracji pojedynczego wektora (zależność B.6), możemy oszacować zbieżność ciągu generowanego przez iterację na podprzestrzeniach (zależność B.9) następująco [17][24]:

$$0 \leq \tan \varphi_k \leq \gamma \tan \varphi_{k-1} \leq \gamma^k \tan \varphi_0 = \frac{\gamma^k \sqrt{1 - \mu^2}}{\mu} \quad (B.11)$$

gdzie:

$$\dim(S_M) = \dim(V^{(k)}_M) = M \quad (B.12a)$$
$$\mu = \cos \angle(V_M, S_M) > 0 \quad (B.12b)$$
$$\gamma = |\lambda_{M+1}/\lambda_M| < 1 \quad (B.12c)$$
$$\varphi_k = \angle(V_M, S_M) \quad (B.12d)$$

Oczekujemy, że dla odpowiednio dużego k wektory macierzy $V^{(k)}$ będą przybliżać bazęortonormalną. Jednak jeżeli macierz $V^{(k-1)}$ jest kolumnamiortonormalna to macierz $V^{(k)} = AV^{(k-1)}$ na ogół już nie. Konieczna jest więcortonormalizacja macierzy $V^{(k)}$ po każdym kroku iteracji.

Kompletny algorytm iteracji na podprzestrzeniach z reortogonalizacją bazy można zapisać następująco:

1. Wybranie macierzy $V^{(0)} \in \mathbb{R}^{N,M}$ o kolumnachortonormalnych i przyjęcie $k = 1$

2. Wyznaczenie macierzy $W^{(k)} = AV^{(k-1)}$

3. Wyznaczenie macierzy $Q^{(k)} \in \mathbb{R}^{N,M}$ kolumnamiortonormalnej i macierzy gornotrójkątnej $R^{(k)} \in \mathbb{R}^{M,M}$ takich, że

$$W^{(k)} = Q^{(k)}R^{(k)} \quad (B.13)$$

4. Przyjęcie $V^{(k)} = Q^{(k)}$

95
5. Przyjęcie $k = k + 1$ i skok do kroku 2

Kryterium zakończenia iteracji może być norma macierzy resztowej T zdefiniowanej następująco [17][24]:

$$T = AV^{(k)} - V^{(k)} \Lambda^{(k)}$$ \hspace{1cm} (B.14)

gdzie $V^{(k)}$ iterowana macierz w kroku k przybliżająca dominujące wektory własne, a $\Lambda^{(k)}$ macierz przybliżająca dominujące wartości własne. Iterację można skończyć jeżeli:

$$\|T\| \leq \epsilon$$ \hspace{1cm} (B.15)
Bibliografia

